Computer Science > Data Structures and Algorithms
[Submitted on 21 Oct 2022]
Title:Efficient Submodular Optimization under Noise: Local Search is Robust
View PDFAbstract:The problem of monotone submodular maximization has been studied extensively due to its wide range of applications. However, there are cases where one can only access the objective function in a distorted or noisy form because of the uncertain nature or the errors involved in the evaluation. This paper considers the problem of constrained monotone submodular maximization with noisy oracles introduced by [Hassidim et al., 2017]. For a cardinality constraint, we propose an algorithm achieving a near-optimal $\left(1-\frac{1}{e}-O(\varepsilon)\right)$-approximation guarantee (for arbitrary $\varepsilon > 0$) with only a polynomial number of queries to the noisy value oracle, which improves the exponential query complexity of [Singer et al., 2018]. For general matroid constraints, we show the first constant approximation algorithm in the presence of noise. Our main approaches are to design a novel local search framework that can handle the effect of noise and to construct certain smoothing surrogate functions for noise reduction.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.