Computer Science > Machine Learning
[Submitted on 17 Oct 2022 (v1), last revised 23 Oct 2022 (this version, v2)]
Title:A Transformer-based Generative Model for De Novo Molecular Design
View PDFAbstract:In the scope of drug discovery, the molecular design aims to identify novel compounds from the chemical space where the potential drug-like molecules are estimated to be in the order of 10^60 - 10^100. Since this search task is computationally intractable due to the unbounded search space, deep learning draws a lot of attention as a new way of generating unseen molecules. As we seek compounds with specific target proteins, we propose a Transformer-based deep model for de novo target-specific molecular design. The proposed method is capable of generating both drug-like compounds (without specified targets) and target-specific compounds. The latter are generated by enforcing different keys and values of the multi-head attention for each target. In this way, we allow the generation of SMILES strings to be conditional on the specified target. Experimental results demonstrate that our method is capable of generating both valid drug-like compounds and target-specific compounds. Moreover, the sampled compounds from conditional model largely occupy the real target-specific molecules' chemical space and also cover a significant fraction of novel compounds.
Submission history
From: Honggang Zhao [view email][v1] Mon, 17 Oct 2022 05:03:35 UTC (2,590 KB)
[v2] Sun, 23 Oct 2022 01:09:54 UTC (14,983 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.