Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 6 Oct 2022]
Title:WfBench: Automated Generation of Scientific Workflow Benchmarks
View PDFAbstract:The prevalence of scientific workflows with high computational demands calls for their execution on various distributed computing platforms, including large-scale leadership-class high-performance computing (HPC) clusters. To handle the deployment, monitoring, and optimization of workflow executions, many workflow systems have been developed over the past decade. There is a need for workflow benchmarks that can be used to evaluate the performance of workflow systems on current and future software stacks and hardware platforms.
We present a generator of realistic workflow benchmark specifications that can be translated into benchmark code to be executed with current workflow systems. Our approach generates workflow tasks with arbitrary performance characteristics (CPU, memory, and I/O usage) and with realistic task dependency structures based on those seen in production workflows. We present experimental results that show that our approach generates benchmarks that are representative of production workflows, and conduct a case study to demonstrate the use and usefulness of our generated benchmarks to evaluate the performance of workflow systems under different configuration scenarios.
Submission history
From: Rafael Ferreira Da Silva [view email][v1] Thu, 6 Oct 2022 19:22:06 UTC (1,233 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.