Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Sep 2022 (v1), last revised 31 May 2023 (this version, v2)]
Title:3DGTN: 3D Dual-Attention GLocal Transformer Network for Point Cloud Classification and Segmentation
View PDFAbstract:Although the application of Transformers in 3D point cloud processing has achieved significant progress and success, it is still challenging for existing 3D Transformer methods to efficiently and accurately learn both valuable global features and valuable local features for improved applications. This paper presents a novel point cloud representational learning network, called 3D Dual Self-attention Global Local (GLocal) Transformer Network (3DGTN), for improved feature learning in both classification and segmentation tasks, with the following key contributions. First, a GLocal Feature Learning (GFL) block with the dual self-attention mechanism (i.e., a novel Point-Patch Self-Attention, called PPSA, and a channel-wise self-attention) is designed to efficiently learn the GLocal context information. Second, the GFL block is integrated with a multi-scale Graph Convolution-based Local Feature Aggregation (LFA) block, leading to a Global-Local (GLocal) information extraction module that can efficiently capture critical information. Third, a series of GLocal modules are used to construct a new hierarchical encoder-decoder structure to enable the learning of "GLocal" information in different scales in a hierarchical manner. The proposed framework is evaluated on both classification and segmentation datasets, demonstrating that the proposed method is capable of outperforming many state-of-the-art methods on both classification and segmentation tasks.
Submission history
From: Dening Lu [view email][v1] Wed, 21 Sep 2022 14:34:21 UTC (4,475 KB)
[v2] Wed, 31 May 2023 02:20:58 UTC (2,237 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.