Computer Science > Machine Learning
[Submitted on 12 Sep 2022 (v1), last revised 26 Sep 2022 (this version, v3)]
Title:Bounding the Rademacher Complexity of Fourier neural operators
View PDFAbstract:A Fourier neural operator (FNO) is one of the physics-inspired machine learning methods. In particular, it is a neural operator. In recent times, several types of neural operators have been developed, e.g., deep operator networks, Graph neural operator (GNO), and Multiwavelet-based operator (MWTO). Compared with other models, the FNO is computationally efficient and can learn nonlinear operators between function spaces independent of a certain finite basis. In this study, we investigated the bounding of the Rademacher complexity of the FNO based on specific group norms. Using capacity based on these norms, we bound the generalization error of the model. In addition, we investigated the correlation between the empirical generalization error and the proposed capacity of FNO. From the perspective of our result, we inferred that the type of group norms determines the information about the weights and architecture of the FNO model stored in the capacity. And then, we confirmed these inferences through experiments. Based on this fact, we gained insight into the impact of the number of modes used in the FNO model on the generalization error. And we got experimental results that followed our insights.
Submission history
From: Taeyoung Kim [view email][v1] Mon, 12 Sep 2022 11:11:43 UTC (2,333 KB)
[v2] Mon, 19 Sep 2022 20:28:06 UTC (1 KB) (withdrawn)
[v3] Mon, 26 Sep 2022 17:21:01 UTC (2,333 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.