Computer Science > Cryptography and Security
[Submitted on 2 Sep 2022]
Title:Explainable AI for Android Malware Detection: Towards Understanding Why the Models Perform So Well?
View PDFAbstract:Machine learning (ML)-based Android malware detection has been one of the most popular research topics in the mobile security community. An increasing number of research studies have demonstrated that machine learning is an effective and promising approach for malware detection, and some works have even claimed that their proposed models could achieve 99\% detection accuracy, leaving little room for further improvement. However, numerous prior studies have suggested that unrealistic experimental designs bring substantial biases, resulting in over-optimistic performance in malware detection. Unlike previous research that examined the detection performance of ML classifiers to locate the causes, this study employs Explainable AI (XAI) approaches to explore what ML-based models learned during the training process, inspecting and interpreting why ML-based malware classifiers perform so well under unrealistic experimental settings. We discover that temporal sample inconsistency in the training dataset brings over-optimistic classification performance (up to 99\% F1 score and accuracy). Importantly, our results indicate that ML models classify malware based on temporal differences between malware and benign, rather than the actual malicious behaviors. Our evaluation also confirms the fact that unrealistic experimental designs lead to not only unrealistic detection performance but also poor reliability, posing a significant obstacle to real-world applications. These findings suggest that XAI approaches should be used to help practitioners/researchers better understand how do AI/ML models (i.e., malware detection) work -- not just focusing on accuracy improvement.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.