Electrical Engineering and Systems Science > Systems and Control
[Submitted on 22 Aug 2022]
Title:Data-Driven Control of Distributed Event-Triggered Network Systems
View PDFAbstract:The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems (a.k.a. network systems). To this end, we start by putting forth a novel distributed event-triggering transmission strategy based on periodic sampling, under which a model-based stability criterion for the closed-loop network system is derived, by leveraging a discrete-time looped-functional approach. Marrying the model-based criterion with a data-driven system representation recently developed in the literature, a purely data-driven stability criterion expressed in the form of linear matrix inequalities (LMIs) is established. Meanwhile, the data-driven stability criterion suggests a means for co-designing the event-triggering coefficient matrix and the feedback control gain matrix using only some offline collected state-input data. Finally, numerical results corroborate the efficacy of the proposed distributed data-driven ETS in cutting off data transmissions and the co-design procedure.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.