Computer Science > Information Theory
[Submitted on 29 Jul 2022]
Title:A Modified Union Bound on Symbol Error Probability for Fading Channels
View PDFAbstract:In this paper, we propose a new upper bound on the error probability performance of maximum-likelihood (ML) detection. The proposed approach provides a much tighter upper bound when compared to the traditionally used union bound, especially when the number of pairwise error probabilities (PEPs) is large. In fact, the proposed approach tightens the union bound by first assuming that a detection error always occurs in a deep fading event where the channel gain is lower than a certain threshold. A minimisation is then taken with respect to the gain threshold in order to make the upper bound as tight as possible. We also prove that the objective function has a single minimiser under several general assumptions so that the minimiser can be easily found using optimisation algorithms. The expression of the new upper bound under correlated Rayleigh fading channels is derived and several analytical and numerical examples are provided to show the performance of the proposed bound.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.