Computer Science > Machine Learning
[Submitted on 13 Jul 2022]
Title:AdamNODEs: When Neural ODE Meets Adaptive Moment Estimation
View PDFAbstract:Recent work by Xia et al. leveraged the continuous-limit of the classical momentum accelerated gradient descent and proposed heavy-ball neural ODEs. While this model offers computational efficiency and high utility over vanilla neural ODEs, this approach often causes the overshooting of internal dynamics, leading to unstable training of a model. Prior work addresses this issue by using ad-hoc approaches, e.g., bounding the internal dynamics using specific activation functions, but the resulting models do not satisfy the exact heavy-ball ODE. In this work, we propose adaptive momentum estimation neural ODEs (AdamNODEs) that adaptively control the acceleration of the classical momentum-based approach. We find that its adjoint states also satisfy AdamODE and do not require ad-hoc solutions that the prior work employs. In evaluation, we show that AdamNODEs achieve the lowest training loss and efficacy over existing neural ODEs. We also show that AdamNODEs have better training stability than classical momentum-based neural ODEs. This result sheds some light on adapting the techniques proposed in the optimization community to improving the training and inference of neural ODEs further. Our code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.