Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Jul 2022]
Title:Spatial Transformation for Image Composition via Correspondence Learning
View PDFAbstract:When using cut-and-paste to acquire a composite image, the geometry inconsistency between foreground and background may severely harm its fidelity. To address the geometry inconsistency in composite images, several existing works learned to warp the foreground object for geometric correction. However, the absence of annotated dataset results in unsatisfactory performance and unreliable evaluation. In this work, we contribute a Spatial TRAnsformation for virtual Try-on (STRAT) dataset covering three typical application scenarios. Moreover, previous works simply concatenate foreground and background as input without considering their mutual correspondence. Instead, we propose a novel correspondence learning network (CorrelNet) to model the correspondence between foreground and background using cross-attention maps, based on which we can predict the target coordinate that each source coordinate of foreground should be mapped to on the background. Then, the warping parameters of foreground object can be derived from pairs of source and target coordinates. Additionally, we learn a filtering mask to eliminate noisy pairs of coordinates to estimate more accurate warping parameters. Extensive experiments on our STRAT dataset demonstrate that our proposed CorrelNet performs more favorably against previous methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.