Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Jun 2022 (v1), last revised 17 Apr 2024 (this version, v3)]
Title:TCJA-SNN: Temporal-Channel Joint Attention for Spiking Neural Networks
View PDF HTML (experimental)Abstract:Spiking Neural Networks (SNNs) are attracting widespread interest due to their biological plausibility, energy efficiency, and powerful spatio-temporal information representation ability. Given the critical role of attention mechanisms in enhancing neural network performance, the integration of SNNs and attention mechanisms exhibits potential to deliver energy-efficient and high-performance computing paradigms. We present a novel Temporal-Channel Joint Attention mechanism for SNNs, referred to as TCJA-SNN. The proposed TCJA-SNN framework can effectively assess the significance of spike sequence from both spatial and temporal dimensions. More specifically, our essential technical contribution lies on: 1) We employ the squeeze operation to compress the spike stream into an average matrix. Then, we leverage two local attention mechanisms based on efficient 1D convolutions to facilitate comprehensive feature extraction at the temporal and channel levels independently. 2) We introduce the Cross Convolutional Fusion (CCF) layer as a novel approach to model the inter-dependencies between the temporal and channel scopes. This layer breaks the independence of these two dimensions and enables the interaction between features. Experimental results demonstrate that the proposed TCJA-SNN outperforms SOTA by up to 15.7% accuracy on standard static and neuromorphic datasets, including Fashion-MNIST, CIFAR10-DVS, N-Caltech 101, and DVS128 Gesture. Furthermore, we apply the TCJA-SNN framework to image generation tasks by leveraging a variation autoencoder. To the best of our knowledge, this study is the first instance where the SNN-attention mechanism has been employed for image classification and generation tasks. Notably, our approach has achieved SOTA performance in both domains, establishing a significant advancement in the field. Codes are available at this https URL.
Submission history
From: Rui-Jie Zhu [view email][v1] Tue, 21 Jun 2022 08:16:08 UTC (4,823 KB)
[v2] Sun, 10 Dec 2023 01:01:22 UTC (5,650 KB)
[v3] Wed, 17 Apr 2024 17:36:19 UTC (9,457 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.