Computer Science > Computation and Language
[Submitted on 23 May 2022 (v1), last revised 4 Nov 2022 (this version, v6)]
Title:Non-Parametric Domain Adaptation for End-to-End Speech Translation
View PDFAbstract:End-to-End Speech Translation (E2E-ST) has received increasing attention due to the potential of its less error propagation, lower latency, and fewer parameters. However, the effectiveness of neural-based approaches to this task is severely limited by the available training corpus, especially for domain adaptation where in-domain triplet training data is scarce or nonexistent. In this paper, we propose a novel non-parametric method that leverages domain-specific text translation corpus to achieve domain adaptation for the E2E-ST system. To this end, we first incorporate an additional encoder into the pre-trained E2E-ST model to realize text translation modelling, and then unify the decoder's output representation for text and speech translation tasks by reducing the correspondent representation mismatch in available triplet training data. During domain adaptation, a k-nearest-neighbor (kNN) classifier is introduced to produce the final translation distribution using the external datastore built by the domain-specific text translation corpus, while the universal output representation is adopted to perform a similarity search. Experiments on the Europarl-ST benchmark demonstrate that when in-domain text translation data is involved only, our proposed approach significantly improves baseline by 12.82 BLEU on average in all translation directions, even outperforming the strong in-domain fine-tuning method.
Submission history
From: Yichao Du [view email][v1] Mon, 23 May 2022 11:41:02 UTC (626 KB)
[v2] Wed, 25 May 2022 03:34:35 UTC (626 KB)
[v3] Fri, 27 May 2022 03:41:18 UTC (635 KB)
[v4] Thu, 14 Jul 2022 02:45:27 UTC (616 KB)
[v5] Wed, 26 Oct 2022 07:11:38 UTC (616 KB)
[v6] Fri, 4 Nov 2022 06:55:23 UTC (616 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.