Computer Science > Computer Science and Game Theory
[Submitted on 4 May 2022]
Title:Estimation of Standard Auction Models
View PDFAbstract:We provide efficient estimation methods for first- and second-price auctions under independent (asymmetric) private values and partial observability. Given a finite set of observations, each comprising the identity of the winner and the price they paid in a sequence of identical auctions, we provide algorithms for non-parametrically estimating the bid distribution of each bidder, as well as their value distributions under equilibrium assumptions. We provide finite-sample estimation bounds which are uniform in that their error rates do not depend on the bid/value distributions being estimated. Our estimation guarantees advance a body of work in Econometrics wherein only identification results have been obtained, unless the setting is symmetric, parametric, or all bids are observable. Our guarantees also provide computationally and statistically effective alternatives to classical techniques from reliability theory. Finally, our results are immediately applicable to Dutch and English auctions.
Current browse context:
cs.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.