Computer Science > Computation and Language
[Submitted on 2 May 2022 (v1), last revised 6 May 2022 (this version, v2)]
Title:Hausa Visual Genome: A Dataset for Multi-Modal English to Hausa Machine Translation
View PDFAbstract:Multi-modal Machine Translation (MMT) enables the use of visual information to enhance the quality of translations. The visual information can serve as a valuable piece of context information to decrease the ambiguity of input sentences. Despite the increasing popularity of such a technique, good and sizeable datasets are scarce, limiting the full extent of their potential. Hausa, a Chadic language, is a member of the Afro-Asiatic language family. It is estimated that about 100 to 150 million people speak the language, with more than 80 million indigenous speakers. This is more than any of the other Chadic languages. Despite a large number of speakers, the Hausa language is considered low-resource in natural language processing (NLP). This is due to the absence of sufficient resources to implement most NLP tasks. While some datasets exist, they are either scarce, machine-generated, or in the religious domain. Therefore, there is a need to create training and evaluation data for implementing machine learning tasks and bridging the research gap in the language. This work presents the Hausa Visual Genome (HaVG), a dataset that contains the description of an image or a section within the image in Hausa and its equivalent in English. To prepare the dataset, we started by translating the English description of the images in the Hindi Visual Genome (HVG) into Hausa automatically. Afterward, the synthetic Hausa data was carefully post-edited considering the respective images. The dataset comprises 32,923 images and their descriptions that are divided into training, development, test, and challenge test set. The Hausa Visual Genome is the first dataset of its kind and can be used for Hausa-English machine translation, multi-modal research, and image description, among various other natural language processing and generation tasks.
Submission history
From: Idris Abdulmumin [view email][v1] Mon, 2 May 2022 18:05:35 UTC (2,353 KB)
[v2] Fri, 6 May 2022 16:00:39 UTC (2,353 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.