Computer Science > Information Theory
[Submitted on 29 Apr 2022 (v1), last revised 1 Dec 2022 (this version, v2)]
Title:GRAND for Rayleigh Fading Channels
View PDFAbstract:Guessing Random Additive Noise Decoding (GRAND) is a code-agnostic decoding technique for short-length and high-rate channel codes. GRAND tries to guess the channel noise by generating test error patterns (TEPs), and the sequence of the TEPs is the main difference between different GRAND variants. In this work, we extend the application of GRAND to multipath frequency non-selective Rayleigh fading communication channels, and we refer to this GRAND variant as Fading-GRAND. The proposed Fading-GRAND adapts its TEP generation to the fading conditions of the underlying communication channel, outperforming traditional channel code decoders in scenarios with $L$ spatial diversity branches as well as scenarios with no diversity. Numerical simulation results show that the Fading-GRAND outperforms the traditional Berlekamp-Massey (B-M) decoder for decoding BCH code $(127,106)$ and BCH code $(127,113)$ by $\mathbf{0.5\sim6.5}$ dB at a target FER of $10^{-7}$. Similarly, Fading-GRAND outperforms GRANDAB, the hard-input variation of GRAND, by $0.2\sim8$ dB at a target FER of $10^{-7}$ with CRC $(128,104)$ code and RLC $(128,104)$. Furthermore the average complexity of Fading-GRAND, at $\frac{E_b}{N_0}$ corresponding to target FER of $10^{-7}$, is $\frac{1}{2}\times\sim \frac{1}{46}\times$ the complexity of GRANDAB.
Submission history
From: Syed Mohsin Abbas Dr. [view email][v1] Fri, 29 Apr 2022 18:22:06 UTC (568 KB)
[v2] Thu, 1 Dec 2022 03:50:37 UTC (846 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.