Computer Science > Other Computer Science
[Submitted on 7 Apr 2022]
Title:A Validation Procedure for the Estimation of Reachable Regions in Football
View PDFAbstract:Modelling the trajectorial motion of humans along the ground is a foundational task in the quantitative analysis of sports like association football. Most existing models of football player motion have not been validated yet with respect to actual data. One of the reasons for this lack is that performing such a validation is not straightforward, because models of player motion are usually phrased in a way that emphasises possibly reachable positions rather than expected positions. Since positional data of football players typically contains outliers, this data may misrepresent the range of actually reachable positions.
This paper proposes a validation routine for trajectorial motion models that measures and optimises the ability of a motion model to accurately predict all possibly reachable positions by favoring the smallest predicted area of reachable positions that encompasses all observed reached positions up to a manually defined threshold. We demonstrate validation and optimisation on four different motion models, assuming (a) motion with constant speed, (b) motion with constant acceleration, (c) motion with constant acceleration with a speed limit, and (d) motion along two segments with constant speed. Our results show that assuming motion with constant speed or constant acceleration without a limit on the achievable speed is particularly inappropriate for an accurate distinction between reachable and unreachable locations. Motion along two segments of constant speed provides by far the highest accuracy among the tested models and serves as an efficient and accurate approximation of real-world player motion.
Submission history
From: Jonas Bischofberger [view email][v1] Thu, 7 Apr 2022 08:34:19 UTC (899 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.