Computer Science > Programming Languages
[Submitted on 21 Apr 2022]
Title:Decomposition Without Regret
View PDFAbstract:Programming languages are embracing both functional and object-oriented paradigms. A key difference between the two paradigms is the way of achieving data abstraction. That is, how to organize data with associated operations. There are important tradeoffs between functional and object-oriented decomposition in terms of extensibility and expressiveness. Unfortunately, programmers are usually forced to select a particular decomposition style in the early stage of programming. Once the wrong design decision has been made, the price for switching to the other decomposition style could be rather high since pervasive manual refactoring is often needed. To address this issue, this paper presents a bidirectional transformation system between functional and object-oriented decomposition. We formalize the core of the system in the FOOD calculus, which captures the essence of functional and object-oriented decomposition. We prove that the transformation preserves the type and semantics of the original program. We further implement FOOD in Scala as a translation tool called Cook and conduct several case studies to demonstrate the applicability and effectiveness of Cook.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.