Computer Science > Software Engineering
[Submitted on 13 Apr 2022]
Title:Deep Learning for Effective and Efficient Reduction of Large Adaptation Spaces in Self-Adaptive Systems
View PDFAbstract:Many software systems today face uncertain operating conditions, such as sudden changes in the availability of resources or unexpected user behavior. Without proper mitigation these uncertainties can jeopardize the system goals. Self-adaptation is a common approach to tackle such uncertainties. When the system goals may be compromised, the self-adaptive system has to select the best adaptation option to reconfigure by analyzing the possible adaptation options, i.e., the adaptation space. Yet, analyzing large adaptation spaces using rigorous methods can be resource- and time-consuming, or even be infeasible. One approach to tackle this problem is by using online machine learning to reduce adaptation spaces. However, existing approaches require domain expertise to perform feature engineering to define the learner, and support online adaptation space reduction only for specific goals. To tackle these limitations, we present 'Deep Learning for Adaptation Space Reduction Plus' -- DLASeR+ in short. DLASeR+ offers an extendable learning framework for online adaptation space reduction that does not require feature engineering, while supporting three common types of adaptation goals: threshold, optimization, and set-point goals. We evaluate DLASeR+ on two instances of an Internet-of-Things application with increasing sizes of adaptation spaces for different combinations of adaptation goals. We compare DLASeR+ with a baseline that applies exhaustive analysis and two state-of-the-art approaches for adaptation space reduction that rely on learning. Results show that DLASeR+ is effective with a negligible effect on the realization of the adaptation goals compared to an exhaustive analysis approach, and supports three common types of adaptation goals beyond the state-of-the-art approaches.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.