Electrical Engineering and Systems Science > Systems and Control
[Submitted on 12 Apr 2022]
Title:Analytical Uncertainty Propagation for Multi-Period Stochastic Optimal Power Flow
View PDFAbstract:The increase in renewable energy sources (RESs), like wind or solar power, results in growing uncertainty also in transmission grids. This affects grid stability through fluctuating energy supply and an increased probability of overloaded lines. One key strategy to cope with this uncertainty is the use of distributed energy storage systems (ESSs). In order to securely operate power systems containing renewables and use storage, optimization models are needed that both handle uncertainty and apply ESSs. This paper introduces a compact dynamic stochastic chance-constrained optimal power flow (CC-OPF) model, that minimizes generation costs and includes distributed ESSs. Assuming Gaussian uncertainty, we use affine policies to obtain a tractable, analytically exact reformulation as a second-order cone problem (SOCP). We test the new model on five different IEEE networks with varying sizes of 5, 39, 57, 118 and 300 nodes and include complexity analysis. The results show that the model is computationally efficient and robust with respect to constraint violation risk. The distributed energy storage system leads to more stable operation with flattened generation profiles. Storage absorbed RES uncertainty, and reduced generation cost.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.