Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 10 Mar 2022]
Title:Efficient Runtime Profiling for Black-box Machine Learning Services on Sensor Streams
View PDFAbstract:In highly distributed environments such as cloud, edge and fog computing, the application of machine learning for automating and optimizing processes is on the rise. Machine learning jobs are frequently applied in streaming conditions, where models are used to analyze data streams originating from e.g. video streams or sensory data. Often the results for particular data samples need to be provided in time before the arrival of next data. Thus, enough resources must be provided to ensure the just-in-time processing for the specific data stream. This paper focuses on proposing a runtime modeling strategy for containerized machine learning jobs, which enables the optimization and adaptive adjustment of resources per job and component. Our black-box approach assembles multiple techniques into an efficient runtime profiling method, while making no assumptions about underlying hardware, data streams, or applied machine learning jobs. The results show that our method is able to capture the general runtime behaviour of different machine learning jobs already after a short profiling phase.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.