Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 4 Mar 2022 (v1), last revised 21 Mar 2022 (this version, v2)]
Title:BoostMIS: Boosting Medical Image Semi-supervised Learning with Adaptive Pseudo Labeling and Informative Active Annotation
View PDFAbstract:In this paper, we propose a novel semi-supervised learning (SSL) framework named BoostMIS that combines adaptive pseudo labeling and informative active annotation to unleash the potential of medical image SSL models: (1) BoostMIS can adaptively leverage the cluster assumption and consistency regularization of the unlabeled data according to the current learning status. This strategy can adaptively generate one-hot "hard" labels converted from task model predictions for better task model training. (2) For the unselected unlabeled images with low confidence, we introduce an Active learning (AL) algorithm to find the informative samples as the annotation candidates by exploiting virtual adversarial perturbation and model's density-aware entropy. These informative candidates are subsequently fed into the next training cycle for better SSL label propagation. Notably, the adaptive pseudo-labeling and informative active annotation form a learning closed-loop that are mutually collaborative to boost medical image SSL. To verify the effectiveness of the proposed method, we collected a metastatic epidural spinal cord compression (MESCC) dataset that aims to optimize MESCC diagnosis and classification for improved specialist referral and treatment. We conducted an extensive experimental study of BoostMIS on MESCC and another public dataset COVIDx. The experimental results verify our framework's effectiveness and generalisability for different medical image datasets with a significant improvement over various state-of-the-art methods.
Submission history
From: Wenqiao Zhang [view email][v1] Fri, 4 Mar 2022 19:19:41 UTC (2,559 KB)
[v2] Mon, 21 Mar 2022 11:58:20 UTC (2,560 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.