Computer Science > Neural and Evolutionary Computing
[Submitted on 22 Jun 2020]
Title:Fully-parallel Convolutional Neural Network Hardware
View PDFAbstract:A new trans-disciplinary knowledge area, Edge Artificial Intelligence or Edge Intelligence, is beginning to receive a tremendous amount of interest from the machine learning community due to the ever increasing popularization of the Internet of Things (IoT). Unfortunately, the incorporation of AI characteristics to edge computing devices presents the drawbacks of being power and area hungry for typical machine learning techniques such as Convolutional Neural Networks (CNN). In this work, we propose a new power-and-area-efficient architecture for implementing Articial Neural Networks (ANNs) in hardware, based on the exploitation of correlation phenomenon in Stochastic Computing (SC) systems. The architecture purposed can solve the difficult implementation challenges that SC presents for CNN applications, such as the high resources used in binary-tostochastic conversion, the inaccuracy produced by undesired correlation between signals, and the stochastic maximum function implementation. Compared with traditional binary logic implementations, experimental results showed an improvement of 19.6x and 6.3x in terms of speed performance and energy efficiency, for the FPGA implementation. We have also realized a full VLSI implementation of the proposed SC-CNN architecture demonstrating that our optimization achieve a 18x area reduction over previous SC-DNN architecture VLSI implementation in a comparable technological node. For the first time, a fully-parallel CNN as LENET-5 is embedded and tested in a single FPGA, showing the benefits of using stochastic computing for embedded applications, in contrast to traditional binary logic implementations.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.