Quantum Physics
[Submitted on 14 Mar 2018 (v1), last revised 29 Apr 2020 (this version, v2)]
Title:Geometrical versus time-series representation of data in quantum control learning
View PDFAbstract:Recently machine learning techniques have become popular for analysing physical systems and solving problems occurring in quantum computing. In this paper we focus on using such techniques for finding the sequence of physical operations implementing the given quantum logical operation. In this context we analyse the flexibility of the data representation and compare the applicability of two machine learning approaches based on different representations of data. We demonstrate that the utilization of the geometrical structure of control pulses is sufficient for achieving high-fidelity of the implemented evolution. We also demonstrate that artificial neural networks, unlike geometrical methods, posses the generalization abilities enabling them to generate control pulses for the systems with variable strength of the disturbance. The presented results suggest that in some quantum control scenarios, geometrical data representation and processing is competitive to more complex methods.
Submission history
From: Mateusz Ostaszewski [view email][v1] Wed, 14 Mar 2018 09:10:11 UTC (1,329 KB)
[v2] Wed, 29 Apr 2020 09:10:23 UTC (1,309 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.