Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Sep 2023 (v1), last revised 19 Apr 2024 (this version, v3)]
Title:QDFormer: Towards Robust Audiovisual Segmentation in Complex Environments with Quantization-based Semantic Decomposition
View PDF HTML (experimental)Abstract:Audiovisual segmentation (AVS) is a challenging task that aims to segment visual objects in videos according to their associated acoustic cues. With multiple sound sources and background disturbances involved, establishing robust correspondences between audio and visual contents poses unique challenges due to (1) complex entanglement across sound sources and (2) frequent changes in the occurrence of distinct sound events. Assuming sound events occur independently, the multi-source semantic space can be represented as the Cartesian product of single-source sub-spaces. We are motivated to decompose the multi-source audio semantics into single-source semantics for more effective interactions with visual content. We propose a semantic decomposition method based on product quantization, where the multi-source semantics can be decomposed and represented by several disentangled and noise-suppressed single-source semantics. Furthermore, we introduce a global-to-local quantization mechanism, which distills knowledge from stable global (clip-level) features into local (frame-level) ones, to handle frequent changes in audio semantics. Extensive experiments demonstrate that our semantically decomposed audio representation significantly improves AVS performance, e.g., +21.2% mIoU on the challenging AVS-Semantic benchmark with ResNet50 backbone. this https URL.
Submission history
From: Xiang Li [view email][v1] Fri, 29 Sep 2023 20:48:44 UTC (3,374 KB)
[v2] Fri, 8 Dec 2023 04:30:13 UTC (3,067 KB)
[v3] Fri, 19 Apr 2024 15:23:43 UTC (3,698 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.