Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 6 Feb 2018]
Title:Aggregate Graph Statistics
View PDFAbstract:Collecting statistic from graph-based data is an increasingly studied topic in the data mining community. We argue that these statistics have great value as well in dynamic IoT contexts: they can support complex computational activities involving distributed coordination and provision of situation recognition. We show that the HyperANF algorithm for calculating the neighbourhood function of vertices of a graph naturally allows for a fully distributed and asynchronous implementation, thanks to a mapping to the field calculus, a distribution model proposed for collective adaptive systems. This mapping gives evidence that the field calculus framework is well-suited to accommodate massively parallel computations over graphs. Furthermore, it provides a new "self-stabilising" building block which can be used in aggregate computing in several contexts, there including improved leader election or network vulnerabilities detection.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Tue, 6 Feb 2018 04:09:51 UTC (14 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.