|
A. Ahmed
, R. Koetter
and N. R. Shanbhag
, VLSI architectures for soft-decision decoding of Reed-Solomon codes, IEEE Trans. Inf. Theory, 57 (2011)
, 648-667.
|
|
M. Alekhnovich
, Linear Diophantine equations over polynomials and soft decoding of Reed-Solomon codes, IEEE Trans. Inf. Theory, 51 (2005)
, 2257-2265.
|
|
G. Baker and P. Graves-Morris,
Padé Approximants, Cambridge Univ. Press, 1996.
|
|
M. V. Barel
and A. Bultheel
, A general module theoretic framework for vector M-Padé and matrix rational interpolation, Numerical Algorithms, 3 (1992)
, 451-461.
|
|
B. Beckermann
and G. Labahn
, A uniform approach for the fast computation of matrix-type Padé approximants, SIAM J. Matr. Anal. Appl., 15 (1994)
, 804-823.
|
|
P. Beelen
and K. Brander
, Key equations for list decoding of Reed-Solomon codes and how to solve them, J. Symb. Comp., 45 (2010)
, 773-786.
|
|
P. Beelen
, T. Høholdt
, J. S. R. Nielsen
and Y. Wu
, On rational interpolation-based list-decoding and list-decoding binary Goppa codes, IEEE Trans. Inf. Theory, 59 (2013)
, 3269-3281.
|
|
E. R. Berlekamp,
Algebraic Coding Theory, Aegean Park Press, 1968.
|
|
A. Bostan
, C.-P. Jeannerod
and E. Schost
, Solving structured linear systems with large displacement rank, Th. Comp. Sc., 407 (2008)
, 155-181.
|
|
M. Chowdhury
, C.-P. Jeannerod
, V. Neiger
, E. Schost
and G. Villard
, Faster algorithms for multivariate interpolation with multiplicities and simultaneous polynomial approximations, IEEE Trans. Inf. Theory, 61 (2015)
, 2370-2387.
|
|
H. Cohn
and N. Heninger
, Approximate common divisors via lattices, Proc. ANTS, 1 (2012)
, 271-293.
|
|
H. Cohn
and N. Heninger
, Ideal forms of Coppersmith's theorem and Guruswami-Sudan list decoding, Adv. Math. Commun., 9 (2015)
, 311-339.
|
|
P. Fitzpatrick
, On the key equation, Inf. Theory, 41 (1995)
, 1290-1302.
|
|
S. Gao, A new algorithm for decoding Reed-Solomon codes, in Communications, Information and Network Security, Springer, 2003, 55-68.
|
|
P. Giorgi, C. Jeannerod and G. Villard, On the complexity of polynomial matrix computations, in Proc. ISSAC, 2003,135-142.
|
|
S. Gupta
, S. Sarkar
, A. Storjohann
and J. Valeriote
, Triangular basis decompositions and derandomization of linear algebra algorithms over, J. Symb. Comp., 47 (2012)
, 422-453.
|
|
V. Guruswami
and M. Sudan
, Improved decoding of Reed-Solomon codes and algebraic-geometric codes, IEEE Trans. Inf. Theory, 45 (1999)
, 1757-1767.
|
|
S. M. Johnson
, A new upper bound for error-correcting codes, IEEE Trans. Inf. Theory, 46 (1962)
, 203-207.
|
|
T. Kailath,
Linear Systems, Prentice-Hall, 1980.
|
|
R. Koetter and A. Vardy, A complexity reducing transformation in algebraic list decoding of Reed-Solomon codes, in Proc. IEEE ITW, 2003.
|
|
R. Koetter
and A. Vardy
, Algebraic soft-decision decoding of Reed-Solomon codes, IEEE Trans. Inf. Theory, 49 (2003)
, 2809-2825.
|
|
K. Lee
and M. E. O'Sullivan
, List decoding of Reed-Solomon codes from a Gröbner basis perspective, J. Symb. Comp., 43 (2008)
, 645-658.
|
|
K. Lee
and M. E. O'Sullivan
, List decoding of Hermitian codes using Gröbner bases, J. Symb. Comp., 44 (2009)
, 1662-1675.
|
|
W. Li, J. S. R. Nielsen and V. R. Sidorenko, On decoding of interleaved Chinese remainder codes, in Proc. MTNS, 2014.
|
|
M. Mohamed, S. Rizkalla, H. Zoerlein and M. Bossert, Deterministic compressed sensing with power decoding for complex Reed-Solomon codes, in Proc. SCC, 2015.
|
|
T. Mulders
and A. Storjohann
, On lattice reduction for polynomial matrices, J. Symb. Comp., 35 (2003)
, 377-401.
|
|
V. Neiger,
Fast computation of shifted Popov forms of polynomial matrices via systems of modular polynomial equations, 2016.
|
|
V. Neiger, J. Rosenkilde and E. Schost, Fast computation of the roots of polynomials over the ring of power series, in Proc. ISSAC, 2017.
|
|
J. S. R. Nielsen, Generalised multi-sequence shift-register synthesis using module minimisation, in Proc. IEEE ISIT, 2013,882-886.
|
|
J. S. R. Nielsen,
List Decoding of Algebraic Codes, Ph. D thesis, Technical Univ. Denmark, 2013.
|
|
J. S. R. Nielsen, Power decoding of Reed-Solomon codes revisited, in Proc. ICMCTA, 2014.
|
|
J. S. R. Nielsen, Power decoding of Reed-Solomon up to the johnson radius, in Proc. ACCT, 2014.
|
|
J. S. R. Nielsen
and P. Beelen
, Sub-quadratic decoding of one-point Hermitian codes, IEEE Trans. Inf. Theory, 61 (2015)
, 3225-3240.
|
|
R. R. Nielsen and T. Høholdt, Decoding Reed-Solomon codes beyond half the minimum distance, in Coding Theory, Cryptography and Related Areas, Springer, 1998,221-236.
|
|
Z. Olesh and A. Storjohann, The vector rational function reconstruction problem, in Proc. WWCA, 2006,137-149.
|
|
S. Puchinger and J. Rosenkilde, Decoding of interleaved Reed-Solomon codes using improved power decoding, in Proc. ISIT, 2017,356--360.
|
|
J. Rosenkilde and A. Storjohann, Algorithms for simultaneous Padé approximations, in Proc. ISSAC, 2016,405-412.
|
|
J. Rosenkilde and A. Storjohann, Algorithms for simultaneous Hermite Padé approximations, in preparation, extension of [37].
|
|
R. Roth,
Introduction to Coding Theory, Cambridge Univ. Press, 2006.
|
|
R. Roth
and G. Ruckenstein
, Efficient decoding of Reed-Solomon codes beyond half the minimum distance, IEEE Trans. Inf. Theory, 46 (2000)
, 246-257.
|
|
G. Schmidt, V. Sidorenko and M. Bossert, Decoding Reed-Solomon codes beyond half the minimum distance using shift-register synthesis, in Proc. IEEE ISIT, 2006,459-463.
|
|
G. Schmidt
, V. Sidorenko
and M. Bossert
, Syndrome decoding of Reed-Solomon codes beyond half the minimum distance based on shift-register synthesis, IEEE Trans. Inf. Theory, 56 (2010)
, 5245-5252.
|
|
V. Sidorenko
and M. Bossert
, Fast skew-feedback shift-register synthesis, Des. Codes Crypt., 70 (2014)
, 55-67.
|
|
V. Sidorenko
and G. Schmidt
, A linear algebraic approach to multisequence shift-register synthesis, Probl. Inf. Transm., 47 (2011)
, 149-165.
|
|
W. A. Stein et al, SageMath Software, http://www.sagemath.org
|
|
A. Storjohann
, High-order lifting and integrality certification, J. Symb. Comp., 36 (2003)
, 613-648.
|
|
M. Sudan
, Decoding of Reed-Solomon codes beyond the error-correction bound, J. Complexity, 13 (1997)
, 180-193.
|
|
Y. Sugiyama
, M. Kasahara
, S. Hirasawa
and T. Namekawa
, A method for solving key equation for decoding Goppa codes, Inf. Control, 27 (1975)
, 87-99.
|
|
P. Trifonov
and M. Lee
, Efficient interpolation in the Wu list decoding algorithm, IEEE Trans. Inf. Theory, 58 (2012)
, 5963-5971.
|
|
J. von zur Gathen and J. Gerhard,
Modern Computer Algebra, 3rd edition, Cambridge Univ. Press, 2012.
|
|
A. Wachter-Zeh
, A. Zeh
and M. Bossert
, Decoding interleaved Reed-Solomon codes beyond their joint error-correcting capability, Des. Codes Crypt., 71 (2012)
, 261-281.
|
|
Y. Wu
, New list decoding algorithms for Reed-Solomon and BCH codes, IEEE Trans. Inf. Theory, 54 (2008)
, 3611-3630.
|
|
A. Zeh
, C. Gentner
and D. Augot
, An interpolation procedure for list decoding Reed-Solomon codes based on generalized key equations, IEEE Trans. Inf. Theory, 57 (2011)
, 5946-5959.
|
|
A. Zeh, A. Wachter and M. Bossert, Unambiguous decoding of generalized Reed-Solomon codes beyond half the minimum distance, in Proc. IZS, 2012.
|