Primary Sources and Food Web Structure of a Tropical Wetland with High Density of Mangrove Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Processing
2.3. Feeding Habits (Stomach Contents Analysis)
2.4. Stable Isotopes Analysis (SIA)
2.5. Trophic Position (TP)
2.6. Food Web Structure
3. Results
3.1. Feeding Habits
3.2. Isotopic Niche
3.3. Trophic Position (TP) and Food Web Structure
4. Discussion
4.1. Feeding Habits
4.2. Isotopic Niche
4.3. Trophic Position (TP) and Food Web Structure
4.4. Importance of the Contribution of Mangroves
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Campos-Silva, J.V.; Peres, C.A. Community-based management induces rapid recovery of a high-value tropical freshwater fishery. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Nagelkerken, I.; Blaber, S.J.M.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L.G.; Meynecke, J.O.; Pawlik, J.; Penrose, H.M.; Sasekumar, A.; et al. The habitat function of mangroves for terrestrial and marine fauna: A review. Aquat. Bot. 2008, 89, 155–185. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef] [PubMed]
- Muro-Torres, V.M.; Soto-Jiménez, M.F.; Green, L.; Quintero, J.; Amezcua, F. Food web structure of a subtropical coastal lagoon. Aquat. Ecol. 2019, 53, 407–430. [Google Scholar] [CrossRef]
- Odum, W.E.; Heald, E.J. The detritus-based food web of an estuarine mangrove community. Estuar. Res. Chem. Biol. Estuar. Syst. 1975, 1, 265–268. [Google Scholar]
- Robertson, A.I.; Duke, N.C. Mangroves as nursery sites of fish and crustaceans in mangrove and other nearshore habitats in tropical Australia. Mar. Biol. 1987, 96, 193–205. [Google Scholar] [CrossRef]
- Robertson, A.I.; Blaber, S.J.M. Plankton, Epibenthos and Fish Communities. In Tropical Mangrove Ecosystems; Robertson, A.I., Alongi, D.M., Eds.; American Geophysical Union: Washington, DC, USA, 2007; Volume 41, pp. 173–224. [Google Scholar] [CrossRef]
- Laegdsgaard, P.; Johnson, C. Why do juvenile fish utilize mangrove habitats? J. Exp. Mar. Biol. Ecol. 2001, 25, 229–253. [Google Scholar] [CrossRef] [Green Version]
- Blaber, S.J.M.; Cyrus, D.P.; Albaret, J.J.; Ching, C.V.; Day, J.W.; Elliott, M.; Fonseca, M.S.; Hoss, D.E.; Orensanz, J.; Potter, I.C.; et al. Effects of fishing on the structure, functioning of estuarine, and nearshore ecosystems. ICES J. Mar. Sci. 2000, 57, 590–602. [Google Scholar] [CrossRef]
- Hadwen, W.L.; Russell, G.L.; Arthington, A.H. Gut content-and stable isotope derived diets of four commercially and recreationally important fish species in two intermittently open estuaries. Mar. Freshw. Res. 2007, 58, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Abrantes, K.G.; Sheaves, M. Incorporation of terrestrial wetland material into aquatic food webs in a tropical estuarine wetland. Estuar. Coast. Shelf Sci. 2008, 80, 401–412. [Google Scholar] [CrossRef]
- Giarrizzo, T.; Schwamborn, R.; Saint-Paul, U. Utilization of carbon sources in a northern Brazilian mangrove ecosystem. Estuar. Coast. Shelf Sci. 2011, 95, 447–457. [Google Scholar] [CrossRef]
- Zagars, M.; Ikejima, K.; Kasai, A.; Arai, N.; Tongnunui, P. Trophic characteristics of a mangrove fish community in Southwest Thailand: Important mangrove contribution and intraspecies feeding variability. Estuar. Coast. Shelf Sci. 2013, 119, 145–152. [Google Scholar] [CrossRef]
- Abrantes, K.G.; Johnston, R.; Connolly, R.M.; Sheaves, M. Importance of mangrove carbon for aquatic food webs in wet-dry tropical estuaries. Estuar. Coast. 2015, 38, 383–399. [Google Scholar] [CrossRef] [Green Version]
- Rodelli, M.R.; Gearing, J.N.; Gearing, P.J.; Marshall, N.; Sasekumar, A. Stable isotope ratio as a tracer of mangrove carbon in Malaysian ecosystems. Oecologia 1984, 61, 326–333. [Google Scholar] [CrossRef]
- Marguillier, S.; van der Velde, G.; Dehairs, F.; Hemminga, M.; Rajagopal, S. Trophic relationships in an interlinked mangrove-seagrass ecosystem as traced by δ13C and δ15N. Mar. Ecol. Prog. Ser. 1992, 151, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Bouillon, S.; Raman, A.V.; Dauby, P.; Dehairs, F. Carbon and nitrogen stable isotope ratios of subtidal benthic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India). Estuar. Coast. Shelf Sci. 2002, 54, 901–913. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, P.; Hays, C. Are mangroves nursery habitat for transient fishes and decapods? Wetlands 2003, 23, 449–458. [Google Scholar] [CrossRef]
- Nagelkerken, I.; Van Der Velde, G. Are Caribbean mangroves important feeding grounds for juvenile reef fish from adjacent seagrass beds? Mar. Ecol. Prog. Ser. 2004, 274, 143–151. [Google Scholar] [CrossRef]
- Kruitwagen, G.; Nagelkerken, I.; Lugendo, B.R.; Mgaya, Y.D.; Bonga, S.E. Importance of different carbon sources for macroinvertebrates and fishes of an interlinked mangrove-mudflat ecosystem (Tanzania). Estuar. Coast. Shelf Sci. 2010, 88, 464–472. [Google Scholar] [CrossRef]
- Igulu, M.M.; Nagelkerken, I.; van der Velde, G.; Mgaya, Y.D. Mangrove fish production is largely fuelled by external food sources: A stable isotope analysis of fishes at the individual, species, and community levels from across the globe. Ecosystems 2013, 16, 1336–1352. [Google Scholar] [CrossRef]
- Chong, V.C.; Low, C.B.; Ichikawa, T. Contribution of mangrove detritus to juvenile prawn nutrition: A dual stable isotope study in a Malaysian mangrove forest. Mar. Biol. 2001, 138, 77–86. [Google Scholar] [CrossRef]
- Lee, S.Y. Exchange of organic matter and nutrients between mangroves and estuaries: Myths, methodological issues and missing links. Int. J. Environ. Sci. Technol. 2005, 31, 163–175. [Google Scholar]
- Kristensen, D.K.; Kristensen, E.; Mangion, P. Food partitioning of leaf-eating mangrove crabs (Sesarminae): Experimental and stable isotope (13C and 15N) evidence. Estuar. Coast. Shelf Sci. 2010, 87, 583–590. [Google Scholar] [CrossRef]
- Bui, T.H.H.; Lee, S.Y. Does ‘you are what you eat’ apply to mangrove grapsid crabs? PLoS ONE 2014, 9, e89074. [Google Scholar] [CrossRef] [Green Version]
- Zetina Rejón, M.J.; Cabrera-Neri, E.; López-Ibarra, G.A.; Arcos-Huitrón, N.E.; Christensen, V. Trophic modeling of the continental shelf ecosystem outside of Tabasco, Mexico: A network and modularity analysis. Ecol. Model. 2015, 313, 314–324. [Google Scholar] [CrossRef]
- Ruelas-Inzunza, J.R.; Páez-Osuna, F. Trophic distribution of Cd, Pb and Zn in a food web from Altata-Ensenada del Pabellón subtropical lagoon, SE Gulf of California. Arch. Environ. Con. Toxicol. 2008, 54, 584–596. [Google Scholar] [CrossRef]
- Jara-Marini, M.E.; Soto-Jiménez, M.F.; Páez-Osuna, F. Mercury transfer in a subtropical coastal lagoon food web (SE Gulf of California) under two contrasting climatic condition. Environ. Toxicol. 2011, 30, 1611–1617. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Carranza, M.; Hoeinghau, D.J.; Garcia, A.M.; Romero-Rodriguez, A.M. Aquatic food webs in mangrove and seagrass habitats of Centla Wetland, a Biosphere Reserve in Southeastern Mexico. Neotrop. Ichthyol. 2010, 8, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Jara-Marini, M.E.; Páez-Osuna, F.; Soto-Jiménez, M. Trophic Relationships Within a Subtropical Estuarine Food Web from the Southeast Gulf of California through Analysis of Stable Isotopes of Carbon and Nitrogen. In Fisheries Management of Mexican and Central American Estuaries; Amezcua, F., Bellgraph, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 69–79. [Google Scholar] [CrossRef]
- Thimdee, W.; Deein, G.; Sangrungruang, C.; Matsunaga, K. Analysis of primary food sources and trophic relationships of aquatic animals in a mangrove-fringed estuary, Khung Krabaen Bay (Thailand) using dual stable isotope techniques. Wetl. Ecol. Manag. 2004, 12, 135–144. [Google Scholar] [CrossRef]
- Pinkas, L.; Oliphant, S.M.; Iverson, I.L.K. Food habits of albacore, bluefin tuna, and bonito in California waters. Fish Bulletin 1971, 152, 1–105. [Google Scholar]
- Cortes, E. A critical review of methods of studying fish feeding based on analysis of stomach contents: Application to elasmobranch fishes. Can. J. Fish. Aquat. Sci. 1997, 54, 726–738. [Google Scholar] [CrossRef]
- Post, D.M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 2002, 83, 703–718. [Google Scholar] [CrossRef]
- Amezcua, F.; Muro-Torres, V.; Soto-Jiménez, M.F. Stable isotope analysis versus TROPH: A comparison of methods for estimating fish trophic positions in a subtropical estuarine system. Aquat. Ecol. 2015, 49, 235–250. [Google Scholar] [CrossRef]
- Minagawa, M.; Wada, E. Stepwise enrichment of N-15 along food-chains further evidence and the relation between delta-N-15 and animal age. Geochim. Cosmochim. 1984, 48, 1135–1140. [Google Scholar] [CrossRef]
- Parnell, A.C.; Inger, R.; Bearhop, S.; Jackson, A.L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 2010, 5, e9672. [Google Scholar] [CrossRef] [PubMed]
- Layman, C.A.; Arrington, D.A.; Montaña, C.G.; Post, D.M. Can stable isotope ratios provide quantitative measures of trophic diversity within food webs? Ecology 2007, 88, 42–48. [Google Scholar] [CrossRef]
- Jackson, A.L.; Inger, R.; Parnell, A.C.; Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER stable isotope Bayesian ellipses in R. J. Anim. Ecol. 2011, 80, 595–602. [Google Scholar] [CrossRef]
- Swanson, H.K.; Lysy, M.; Power, M.; Stasko, A.D.; Johnson, J.D.; Reist, J.D. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 2015, 96, 318–324. [Google Scholar] [CrossRef]
- Bouillon, S.; Connolly, R.M.; Lee, S.Y. Organic matter exchange and cycling in mangrove ecosystems: Recent insights from stable isotope studies. J. Sea Res. 2008, 59, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Chong, V.C. Mangroves-fisheries linkages—The Malaysian perspective. Bull. Mar. Sci. 2007, 80, 755–772. [Google Scholar]
- Heithaus, E.R.; Heithaus, P.A.; Heithaus, M.R.; Burkholder, D.; Layman, C.A. Trophic dynamics in a relatively pristine subtropical fringing mangrove community. Mar. Ecol. Prog. Ser. 2011, 428, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Lugendo, B.R.; Nagelkerken, I.; Van Der Velde, G.; Mgaya, Y.D. The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibar: Gut content and stable isotope analyses. J. Fish Biol. 2006, 69, 1639–1661. [Google Scholar] [CrossRef]
- Robertson, A.I.; Alongi, D.M.; Boto, K.G. Food chains and carbon fluxes. Tropical mangrove Ecosystem 41. Coast. Estuar. Stud. 1992. [Google Scholar] [CrossRef]
- Gning, N.; Vidy, G.; Thiaw, O.T. Feeding ecology and ontogenic diet shifts of juvenile fish species in an inverse estuary: The Sine-Saloum, Senegal. Estuar. Coast. Shelf Sci. 2008, 76, 395–403. [Google Scholar] [CrossRef]
- Lafaille, P.; Lefeubvre, J.C.; Schricke, M.T.; Feuteun, E. Feeding ecology of 0-group sea bass, Dicentrarchus labrax, in salt marshes of Mont Saint Michel Bay (France). Estuaries 2001, 24, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Gamito, S.; Pires, A.; Pita, C.; Erzini, K. Food availability and the feeding ecology of ichthyofauna of a Ria Formosa (South Portugal). Water Reservoir Estuar. Coast. 2003, 26, 938–948. [Google Scholar] [CrossRef]
- Salgado, J.P.; Cabral, H.N.; Costa, M.J. Feeding ecology of the gobies Pomatoschistus minutus (Pallas, 1770) and Pomatoschistus microps (Kroyer, 1838) in the upper Tagus estuary, Portugal. Sci. Mar. 2004, 68, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Amara, R.; Laffargue, P.; Dewarumez, J.M.; Maryniak, C.; Lagardère, F.; Luczac, C. Feeding ecology and growth of 0-group flatfish (sole, dab and plaice) on a nursery ground (Southern Bight of the North Sea). J. Fish. Biol. 2001, 58, 788–803. [Google Scholar] [CrossRef]
- Sá, R.; Bexiga, C.; Veiga, P.; Vieira, L.; Erzini, K. Feeding ecology and trophic relationships of fish species in the lower Guadiana river estuary and Castro Marim e Vila Real de Santo Antonio saltmarsh. Estuar. Coast. Shelf Sci. 2006, 70, 19–26. [Google Scholar] [CrossRef]
- Pasquaud, S.; Elie, P.; Jeantet, C.; Billy, I.; Martinez, P.; Girardin, M. A preliminary investigation of the fish food web in the Gironde estuary, France, using dietary and stable isotope analyses. Estuar. Coast. Shelf Sci. 2008, 78, 267–279. [Google Scholar] [CrossRef]
- Hobson, K.A. Trophic relationships among high Arctic seabirds: Insights from tissue-dependent stable-isotope models. Mar. Ecol. Prog. Ser. 1993, 95, 7–18. [Google Scholar] [CrossRef]
- Gurney, L.J.; Froneman, P.W.; Pakhomov, E.A.; Mc Quaid, C.D. Trophic positions of three euphausiid species from the Prince Edward Islands (Southern Ocean): Implication for the pelagic food web structure. Mar. Ecol. Prog. Ser. 2001, 217, 67–174. [Google Scholar] [CrossRef]
- Bearhop, S.; Adams, C.E.; Waldron, S.; Fuller, R.A.; Susan, E.A.; Fullert, R.A.; Macleodj, H. Determining trophic niche width: A novel approach using stable isotope analysis. J. Anim. Ecol. 2004, 73, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Matthews, B.; Mazumder, A. A critical evaluation of intrapopulation variation of δ13C and isotopic evidence of individual specialization. Oecologia 2004, 140, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, G.E. Population studies: Animal ecology and demography. Bull. Math. Biol. 1991, 53, 193–213. [Google Scholar] [CrossRef]
- Newsome, S.D.; Tinker, M.T.; Monson, D.H.; Oftedal, O.T.; Ralls, K.; Staedler, M.M.; Fogel, M.L.; Estes, J.A. Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology 2009, 90, 961–974. [Google Scholar] [CrossRef] [Green Version]
- Newsome, S.D.; Martinez del Rio, C.; Bearhop, S.; Phillips, D.L. A niche for isotopic ecology. Front. Ecol. Environ. 2007, 5, 429–436. [Google Scholar] [CrossRef]
- Valdez-Hernández, J.I.; Ruiz-Luna, A.; Guzmán-Arroyo, M.; González-Farias, F.; Acosta-Velázquez, J.; Vázquez-Lule, A.D. Characterization of the Teacapán mangrove site—Agua Brava—Marismas Nacionales, Sinaloa—Nayarit. In Mangrove Sites with Biological Relevance and Ecological Rehabilitation Needs; National Commission for the Knowledge and Use of Biodiversity (CONABIO): Mexico City, Mexico, 2009. [Google Scholar]
- Vinagre, C.; Salgado, J.; Costa, M.J.; Cabral, H.N. Nursery fidelity, food web interactions and primary sources of nutrition of the juveniles of Solea solea and S. senegalensis in the Tagus estuary (Portugal): A stable isotope approach. Estuar. Coast. Shelf Sci. 2008, 76, 255–264. [Google Scholar] [CrossRef]
- Newell, R.I.E.; Marshall, N.; Sasekumar, A.; Chong, V.C. Relative importance of benthic microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from Malaysia. Mar. Biol. 1995, 123, 595–606. [Google Scholar] [CrossRef]
- Schwamborn, R.; Ekau, W.; Voss, M.; Saint-Paul, U. How important are mangroves as a carbon source for decapod crustacean larvae in a tropical estuary? Estuar. Coast. Shelf Sci. 2002, 229, 195–205. [Google Scholar] [CrossRef]
- Tue, N.T.; Hamaoka, H.; Sogabe, A.; Quy, T.D.; Nhuan, M.T.; Omori, K. Food sources of macro-invertebrates in an important mangrove ecosystem of Vietnam determined by dual stable isotope signatures. J. Sea Res. 2012, 72, 14–21. [Google Scholar] [CrossRef]
- Fry, B.; Ewel, K.C. Using stable isotopes in mangrove fisheries research. Isot. Environ. Health Stud. 2003, 39, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, M.; Perumal, P.; Prabu, V.A.; Perumal, N.V.; Rajasekar, T. Phytoplankton diversity in Pichavaram mangrove waters from the south-east coast of India. J. Environ. Biol. 2009, 30, 489–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Groups | t | p-Value |
---|---|---|
Carnivore 2, Carnivore 1 | 3.7035 | 0.01 |
Carnivore 2, Carnivore 3 | 1.0591 | 0.38 |
Carnivore 2, Planktivore | 8.3074 | 0.00 |
Carnivore 2, Detritivore | 8.0119 | 0.00 |
Carnivore 2, Omnivore | 4.0007 | 0.00 |
Carnivore 1, Carnivore 3 | 4.3625 | 0.01 |
Carnivore 1, Planktivore | 5.5486 | 0.01 |
Carnivore 1, Detritivore | 3.6465 | 0.02 |
Carnivore 1, Omnivore | 2.0959 | 0.05 |
Carnivore 3, Planktivore | 9.265 | 0.00 |
Carnivore 3, Detritivore | 10.364 | 0.00 |
Carnivore 3, Omnivore | 4.1795 | 0.00 |
Planktivore, Detritivore | 4.4535 | 0.01 |
Planktivore, Omnivore | 2.4284 | 0.03 |
Detritivore, Omnivore | 0.53857 | 0.73 |
Category | Group | TA | SEAC | Mean Overlap Probability (%) | 95% CI | |
---|---|---|---|---|---|---|
Season | Rainy | 166.6 | 29.9 | Dry | 94.4 | 90–97 |
Dry | 155.7 | 29.2 | Rainy | 93.8 | 90–97 | |
Primary sources | Detritus | 3.7 | 5.2 | Phytoplankton | 34.9 | 15–71 |
Macroalgae | 10.4 | 0–38 | ||||
Mangrove | 37.2 | 15–66 | ||||
Phytoplankton | 19.7 | 14.6 | Detritus | 88.9 | 50–100 | |
Macroalgae | 63.9 | 30–95 | ||||
Mangrove | 79.5 | 51–99 | ||||
Macroalgae | 18.4 | 17.2 | Detritus | 57.1 | 56–100 | |
Phytoplankton | 44.5 | 59–99 | ||||
Mangrove | 53.9 | 37–97 | ||||
Mangrove | 13.3 | 9.5 | Detritus | 89.4 | 1–98 | |
Phytoplankton | 83.7 | 27–89 | ||||
Macroalgae | 70.2 | 26–86 | ||||
Consumers | Bivalves | 22.1 | 7.9 | Gasteropods | 80.2 | 32–100 |
Shrimps | 54.1 | 23–81 | ||||
Zooplankton | 37.3 | 12–66 | ||||
Crabs | 48.5 | 22–75 | ||||
Fishes | 43.3 | 33–57 | ||||
Gasteropods | 2.0 | 7.3 | Bivalves | 22.3 | 5–61 | |
Shrimps | 6.1 | 0–23 | ||||
Zooplankton | 14.7 | 1–58 | ||||
Crabs | 2.2 | 0–13 | ||||
Fishes | 10.3 | 3–24 | ||||
Shrimps | 18.7 | 13.5 | Bivalves | 62.1 | 31–91 | |
Gasteropods | 38.6 | 0–98 | ||||
Zooplankton | 45.4 | 11–90 | ||||
Crabs | 52.6 | 24–83 | ||||
Fishes | 53.3 | 33–76 | ||||
Zooplankton | 14.5 | 10.4 | Bivalves | 54.1 | 14–93 | |
Gasteropods | 55.1 | 2–100 | ||||
Shrimps | 33.1 | 7–74 | ||||
Crabs | 19.7 | 1–66 | ||||
Fishes | 36.4 | 20–65 | ||||
Crabs | 31.6 | 17.9 | Bivalves | 74.4 | 42–99 | |
Gasteropods | 19.5 | 0–98 | ||||
Shrimps | 76.2 | 43–98 | ||||
Zooplankton | 33.7 | 2–91 | ||||
Fishes | 58.2 | 43–85 | ||||
Fishes | 175.9 | 29.6 | Bivalves | 98.6 | 95–100 | |
Gasteropods | 96.9 | 70–100 | ||||
Shrimps | 97.4 | 80–100 | ||||
Zooplankton | 92.4 | 71–100 | ||||
Crabs | 90.1 | 73–99 | ||||
Feeding guild | Detritivores | 66.6 | 22.6 | Herbivores | 97.1 | 70–100 |
Planktivores | 80.4 | 64–92 | ||||
Omnivores | 78.2 | 65–90 | ||||
Carnivores 1 | 91.4 | 77–99 | ||||
Carnivores 2 | 82.9 | 65–95 | ||||
Carnivores 3 | 77 | 62–89 | ||||
Herbivores | 2.1 | 2.7 | Detritivores | 18.8 | 6–41 | |
Planktivores | 10.9 | 4–23 | ||||
Omnivores | 8.5 | 2–22 | ||||
Carnivores 1 | 11.7 | 2–31 | ||||
Carnivores 2 | 10.6 | 3–25 | ||||
Carnivores 3 | 7.4 | 2–18 | ||||
Planktivore | 68.9 | 20.8 | Detritivores | 81 | 65–92 | |
Herbivores | 95.4 | 66–100 | ||||
Omnivores | 67.1 | 56–79 | ||||
Carnivores 1 | 93.5 | 84–99 | ||||
Carnivores 2 | 90.8 | 80–98 | ||||
Carnivores 3 | 88.7 | 80–95 | ||||
Omnivores | 135.7 | 30.7 | Detritivores | 95.1 | 88–99 | |
Herbivores | 95.2 | 59–100 | ||||
Planktivores | 92.7 | 86–98 | ||||
Carnivores 1 | 93.5 | 84–99 | ||||
Carnivores 2 | 94.4 | 85–99 | ||||
Carnivores 3 | 93.6 | 87–98 | ||||
Carnivores 1 | 74.6 | 20.63 | Detritivores | 66.3 | 48–85 | |
Herbivores | 82.9 | 27–100 | ||||
Planktivores | 76.5 | 63–90 | ||||
Omnivores | 52.2 | 37–69 | ||||
Carnivores 2 | 74.7 | 57–91 | ||||
Carnivores 3 | 66.9 | 51–82 | ||||
Carnivores 2 | 72.4 | 21.3 | Detritivores | 86.3 | 69–97 | |
Herbivores | 95.1 | 62–100 | ||||
Planktivores | 92.2 | 82–99 | ||||
Omnivores | 75.3 | 59–89 | ||||
Carnivores 1 | 93 | 80–99 | ||||
Carnivores 3 | 90.4 | 79–98 | ||||
Carnivores 3 | 11.5.1 | 22.9 | Detritivores | 85.3 | 70–95 | |
Herbivores | 86.9 | 39–100 | ||||
Planktivores | 90.2 | 82–96 | ||||
Omnivores | 78.2 | 67–89 | ||||
Carnivores 1 | 84.9 | 70–96 | ||||
Carnivores 2 | 90.9 | 80–98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muro-Torres, V.M.; Amezcua, F.; Soto-Jiménez, M.; Balart, E.F.; Serviere-Zaragoza, E.; Green, L.; Rajnohova, J. Primary Sources and Food Web Structure of a Tropical Wetland with High Density of Mangrove Forest. Water 2020, 12, 3105. https://doi.org/10.3390/w12113105
Muro-Torres VM, Amezcua F, Soto-Jiménez M, Balart EF, Serviere-Zaragoza E, Green L, Rajnohova J. Primary Sources and Food Web Structure of a Tropical Wetland with High Density of Mangrove Forest. Water. 2020; 12(11):3105. https://doi.org/10.3390/w12113105
Chicago/Turabian StyleMuro-Torres, Victor M., Felipe Amezcua, Martin Soto-Jiménez, Eduardo F. Balart, Elisa Serviere-Zaragoza, Lucinda Green, and Jana Rajnohova. 2020. "Primary Sources and Food Web Structure of a Tropical Wetland with High Density of Mangrove Forest" Water 12, no. 11: 3105. https://doi.org/10.3390/w12113105
APA StyleMuro-Torres, V. M., Amezcua, F., Soto-Jiménez, M., Balart, E. F., Serviere-Zaragoza, E., Green, L., & Rajnohova, J. (2020). Primary Sources and Food Web Structure of a Tropical Wetland with High Density of Mangrove Forest. Water, 12(11), 3105. https://doi.org/10.3390/w12113105