Hyers–Ulam Stability and Existence of Solutions to the Generalized Liouville–Caputo Fractional Differential Equations
Abstract
:1. Introduction
2. Preliminaries
- (i)
- =, .
- (ii)
- .
- (i)
- .
- (ii)
- .
- (iii)
- .
- (iv)
- .
3. Hyers–Ulam Stability for Linear Problems
4. Existence and Stability Results for the Nonlinear Equation
5. An Example
Author Contributions
Funding
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Martínez-García, M.; Zhang, Y.; Gordon, T. Memory pattern identification for feedback tracking control in human-machine systems. Hum. Factors 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-García, M.; Gordon, T. Human control of systems with fractional order dynamics. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, 9–12 October 2016. [Google Scholar]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Liu, K.; Wang, J.; O’Regan, D. Ulam-Hyers-Mittag–Leffler stability for ψ-Hilfer fractional-order delay differential equations. Adv. Differ. Equ. 2019, 50, 1–12. [Google Scholar] [CrossRef]
- Losada, J.; Nieto, J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Baleanu, D.; Mousalou, A.; Rezapour, S. On the existence of solutions for some infinite coefficient-symmetric Caputo–Fabrizio fractional integro-differential equations. Bound. Value Prob. 2017, 145, 1–9. [Google Scholar] [CrossRef]
- Goufo, F.E.D. Application of the Caputo–Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equations. Math. Model. Anal. 2016, 21, 188–198. [Google Scholar] [CrossRef]
- Moore, E.; Sirisubtawee, S.; Koonparasert, S. A Caputo–Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment. Adv. Differ. Equ. 2019, 2019, 200. [Google Scholar] [CrossRef] [Green Version]
- Dokuyucu, M.; Celik, E.; Bulut, H.; Baskonus, H. Cancer treatment model with the Caputo–Fabrizio fractional derivative. Eur. Phys. J. Plus 2018, 133, 92. [Google Scholar] [CrossRef]
- Başcı, Y.; Öğrekçi, S.; Mısır, A. On Hyers–Ulam stability for fractional differential equations including the new Caputo–Fabrizio fractional derivative. Mediterr. J. Math. 2019, 16, 131. [Google Scholar] [CrossRef]
- Butzer, P.; Kilbas, A.; Trujillo, J. Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 2002, 269, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Butzer, P.; Kilbas, A.; Trujillo, J. Fractional calculus in the mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 2002, 269, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Butzer, P.; Kilbas, A.; Trujillo, J. Mellin transform analysis and integration by parts for hadamard-type fractional integrals. J. Math. Anal. Appl. 2002, 270, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Kilbas, A.; Trujillo, J. Hadamard-type integrals as g-transforms. Integr. Transf. Spec. F. 2003, 14, 413–427. [Google Scholar] [CrossRef]
- Katugampola, U. New approach to a genaralized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar]
- Katugampola, U. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Başcı, Y.; Mısır, A.; Öğrekçi, S. On the stability problem of differential equations in the sense of Ulam. Results Math. 2020, 75, 6. [Google Scholar] [CrossRef]
- Alqifiary, Q.; Jung, S. Laplace transform and generalized Hyers–Ulam stability of linear differential equations. Electron. J. Differ. Equ. 2014, 2014, 1–11. [Google Scholar]
- Huang, J.; Li, Y. Hyers–Ulam stability of delay differential equations of first order. Math. Nachr. 2016, 289, 60–66. [Google Scholar] [CrossRef]
- da C. Sousa, J.; Capelas de Oliveira, E. Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 2018, 81, 50–56. [Google Scholar]
- Wang, J.; Zhou, Y.; Fečkan, M. Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 2012, 64, 3389–3405. [Google Scholar] [CrossRef] [Green Version]
- Capelas de Oliveira, E.; da C. Sousa, J. Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations. Results Math. 2018, 73, 111. [Google Scholar] [CrossRef] [Green Version]
- da C. Sousa, J.; Kucche, K.; Capelas de Oliveira, E. Stability of ψ-Hilfer impulsive fractional differential equations. Appl. Math. Lett. 2018, 88, 73–80. [Google Scholar]
- da C. Sousa, J.; Capelas de Oliveira, E. On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator. J. Fixed Point Theory Appl. 2018, 20, 5–21. [Google Scholar]
- Shah, K.; Ali, A.; Bushnaq, S. Hyers–Ulam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions. Math. Meth. Appl. Sci. 2018, 41, 8329–8343. [Google Scholar] [CrossRef]
- Satco B., R. Ulam-type stability for differential equations driven by measures. Math. Nachr. 2020, 293, 147–157. [Google Scholar] [CrossRef]
- Rezaei, H.; Jung, S.; Rassias, T. Laplace transform and Hyers–Ulam stability of linear differential equations. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
- Wang, C.; Xu, T. Hyers–Ulam stability of fractional linear differential equations involving Caputo fractional derivatives. Appl. Math. 2015, 60, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Chen, W. Laplace transform mathod for the ulam stability of linear fractional differential equations with constant coefficients. Mediterr. J. Math. 2017, 14, 25. [Google Scholar] [CrossRef]
- Liu, K.; Fečkan, M.; O’Regan, D.; Wang, J. Hyers–Ulam stability and existence of solutions for differential equations with Caputo–Fabrizio fractional derivative. Mathematics 2019, 7, 333. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Wang, J.; Zhou, Y.; O’Regan, D. Hyers–Ulam stability and existence of solutions for fractional differential equations with Mittag–Leffler kernel, Chaos. Solitons Fractals 2020, 132, 109534. [Google Scholar] [CrossRef]
- Fahd, J.; Thabet, A. A modified Laplace transform for certain generalized fractional operators. Results Nonlinear Anal. 2018, 1, 88–98. [Google Scholar]
- Ndolane, S.; Gautam, S. Generalized Mittag–Leffler input stability of the fractional differential equations. Symmetry 2019, 11, 608. [Google Scholar]
- Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data depenaence for fractional differential equations with Caputo derivative. Elect. J. Qual. Theory Diff. Equ. 2011, 63, 1–10. [Google Scholar]
- Adjabi, Y.; Jarad, F.; Abdeljawad, T. On generalized fractional operators and a Gronwall type inequality with applications. Filomat 2017, 31, 5457–5473. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Fečkan, M.; Wang, J. Hyers–Ulam Stability and Existence of Solutions to the Generalized Liouville–Caputo Fractional Differential Equations. Symmetry 2020, 12, 955. https://doi.org/10.3390/sym12060955
Liu K, Fečkan M, Wang J. Hyers–Ulam Stability and Existence of Solutions to the Generalized Liouville–Caputo Fractional Differential Equations. Symmetry. 2020; 12(6):955. https://doi.org/10.3390/sym12060955
Chicago/Turabian StyleLiu, Kui, Michal Fečkan, and Jinrong Wang. 2020. "Hyers–Ulam Stability and Existence of Solutions to the Generalized Liouville–Caputo Fractional Differential Equations" Symmetry 12, no. 6: 955. https://doi.org/10.3390/sym12060955