Error Correction of the RapidEye Sub-Pixel Correlation: A Case Study of the 2019 Ridgecrest Earthquake Sequence
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.2. Methods
3.2.1. The Optimal Band of RapidEye Images for Surface Offset Monitoring
3.2.2. Errors Analysis
3.2.3. Correction Methods
3.2.4. The Processing Workflow in Practical Applications
4. Result
5. Discussion
5.1. Comparison with Existing Method and Identified Limitations
5.2. Comparison with Current Research on the 2019 Ridgecrest Earthquake Sequences
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, L.G. A survey of image registration techniques. ACM Comput. Surv. CSUR 1992, 24, 325–376. [Google Scholar] [CrossRef]
- Scambos, T.A.; Dutkiewicz, M.J.; Wilson, J.C.; Bindschadler, R.A. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens. Environ. 1992, 42, 177–186. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.-P.; Delacourt, C. Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sens. Environ. 2017, 189, 40–55. [Google Scholar] [CrossRef]
- Bontemps, N.; Lacroix, P.; Doin, M.P. Inversion of deformation fields time-series from optical images, and application to the long term kinematics of slow-moving landslides in Peru. Remote Sens. Environ. 2018, 210, 144–158. [Google Scholar] [CrossRef]
- Travelletti, J.; Delacourt, C.; Allemand, P.; Malet, J.P.; Schmittbuhl, J.; Toussaint, R.; Bastard, M. Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS-J. Photogramm. Remote Sens. 2012, 70, 39–55. [Google Scholar] [CrossRef]
- Hermas, E.; Leprince, S.; Abou El-Magd, I. Retrieving sand dune movements using sub-pixel correlation of multi-temporal optical remote sensing imagery, northwest Sinai Peninsula, Egypt. Remote Sens. Environ. 2012, 121, 51–60. [Google Scholar] [CrossRef]
- Baird, T.; Bristow, C.S.; Vermeesch, P. Measuring Sand Dune Migration Rates with COSI-Corr and Landsat: Opportunities and Challenges. Remote Sens. 2019, 11, 2423. [Google Scholar] [CrossRef]
- Song, C.; Yu, C.; Li, Z.H.; Li, Y.S.; Xiao, R.Y. Coseismic Slip Distribution of the 2019 Mw 7.5 New Ireland Earthquake from the Integration of Multiple Remote Sensing Techniques. Remote Sens. 2019, 11, 2767. [Google Scholar] [CrossRef]
- Barnhart, W.D.; Willis, M.J.; Lohman, R.B.; Melkonian, A.K. InSAR and Optical Constraints on Fault Slip during the 2010-2011 New Zealand Earthquake Sequence. Seismol. Res. Lett. 2011, 82, 815–823. [Google Scholar] [CrossRef]
- Hollingsworth, J.; Ye, L.L.; Avouac, J.P. Dynamically triggered slip on a splay fault in the MW 7.8, 2016 Kaikoura (New Zealand) earthquake. Geophys. Res. Lett. 2017, 44, 3517–3525. [Google Scholar] [CrossRef]
- Morgan, T.A.; Mahin, S.A. Achieving reliable seismic performance enhancement using multi-stage friction pendulum isolators. Earthq. Eng. Struct. Dyn. 2010, 39, 1443–1461. [Google Scholar] [CrossRef]
- Zhang, J.; He, P.; Hu, X.P.; Liu, Z.M. The Spatio-Temporal Patterns of Glacier Activities in the Eastern Pamir Plateau Investigated by Time Series Sub-Pixel Offsets From Sentinel-2 Optical Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 1256–1268. [Google Scholar] [CrossRef]
- Shangguan, D.H.; Liu, S.Y.; Ding, Y.J.; Guo, W.Q.; Xu, B.Q.; Xu, J.L.; Jiang, Z.L. Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing. J. Glaciol. 2016, 62, 944–953. [Google Scholar] [CrossRef]
- Dille, A.; Kervyn, F.; Handwerger, A.L.; d’Oreye, N.; Derauw, D.; Bibentyo, T.M.; Samsonov, S.; Malet, J.P.; Kervyn, M.; Dewitte, O. When image correlation is needed: Unravelling the complex dynamics of a slow-moving landslide in the tropics with dense radar and optical time series. Remote Sens. Environ. 2021, 258, 16. [Google Scholar] [CrossRef]
- Lacroix, P.; Araujo, G.; Hollingsworth, J.; Taipe, E. Self-Entrainment Motion of a Slow-Moving Landslide Inferred From Landsat-8 Time Series. J. Geophys. Res.-Earth Surf. 2019, 124, 1201–1216. [Google Scholar] [CrossRef]
- Lacroix, P.; Gavillon, T.; Bouchant, C.; Lavé, J.; Mugnier, J.L.; Dhungel, S.; Vernier, F. SAR and optical images correlation illuminates post-seismic landslide motion after the Mw 7.8 Gorkha earthquake (Nepal). Sci. Rep. 2022, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Feng, G.C.; Li, Z.W.; Shan, X.J.; Du, Y.; Wang, H.Q. Spatio-Temporal Error Sources Analysis and Accuracy Improvement in Landsat 8 Image Ground Displacement Measurements. Remote Sens. 2016, 8, 937. [Google Scholar] [CrossRef]
- He, L.J.; Feng, G.C.; Feng, Z.X.; Gao, H. Coseismic Displacements of 2016 Mw7. 8 Kaikoura, new zealand earthquake, using Sentinel-2 optical images. Acta Geod. Cartogr. Sin. 2019, 48, 339–351. [Google Scholar]
- Chang, Y.; Yan, L.X.; Fang, H.Z.; Liu, H. Simultaneous Destriping and Denoising for Remote Sensing Images With Unidirectional Total Variation and Sparse Representation. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1051–1055. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.X.; Wu, T.; Zhong, S. Remote Sensing Image Stripe Noise Removal: From Image Decomposition Perspective. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7018–7031. [Google Scholar] [CrossRef]
- Tsai, F.; Chen, W.W. Striping Noise Detection and Correction of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4122–4131. [Google Scholar] [CrossRef]
- Van Puymbroeck, N.; Michel, R.; Binet, R.; Avouac, J.-P.; Taboury, J. Measuring earthquakes from optical satellite images. Appl. Opt. 2000, 39, 3486–3494. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.X.; Feng, G.C.; Chen, H.; Xu, W.B.; Li, Z.W.; He, L.J.; Ren, Z.Y. A Block Ramp Errors Correction Method of Planet Subpixel Offset: Application to the 2018 Mw 7.5 Palu Earthquake, Indonesia. IEEE Access 2019, 7, 174924–174931. [Google Scholar] [CrossRef]
- Krischke, M.; Niemeyer, W.; Scherer, S. RapidEye—Satellite based geo-information system. Acta Astronaut. 2000, 46, 307–312. [Google Scholar] [CrossRef]
- Stoll, E.; Konstanski, H.; Anderson, C.; Douglass, K.; Oxfort, M. The RapidEye constellation and its data products. In Proceedings of the 2012 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2012; pp. 1–9. [Google Scholar]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248. [Google Scholar] [CrossRef]
- Shang, J.L.; Liu, J.G.; Ma, B.L.; Zhao, T.; Jiao, X.F.; Geng, X.Y.; Huffman, T.; Kovacs, J.M.; Walters, D. Mapping spatial variability of crop growth conditions using RapidEye data in Northern Ontario, Canada. Remote Sens. Environ. 2015, 168, 113–125. [Google Scholar] [CrossRef]
- Ramoelo, A.; Skidmore, A.K.; Cho, M.A.; Schlerf, M.; Mathieu, R.; Heitkönig, I.M.A. Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 151–162. [Google Scholar] [CrossRef]
- Huang, S.Y.; Miao, Y.X.; Yuan, F.; Gnyp, M.L.; Yao, Y.K.; Cao, Q.; Wang, H.Y.; Lenz-Wiedemann, V.I.S.; Bareth, G. Potential of RapidEye and WorldView-2 Satellite Data for Improving Rice Nitrogen Status Monitoring at Different Growth Stages. Remote Sens. 2017, 9, 227. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 2014, 35, 3440–3458. [Google Scholar] [CrossRef]
- Tigges, J.; Lakes, T.; Hostert, P. Urban vegetation classification: Benefits of multitemporal RapidEye satellite data. Remote Sens. Environ. 2013, 136, 66–75. [Google Scholar] [CrossRef]
- Yi, Y.N.; Zhang, W.C. A New Deep-Learning-Based Approach for Earthquake-Triggered Landslide Detection From Single-Temporal RapidEye Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6166–6176. [Google Scholar] [CrossRef]
- Golovko, D.; Roessner, S.; Behling, R.; Wetzel, H.-U.; Kleinschmit, B. Evaluation of remote-sensing-based landslide inventories for hazard assessment in Southern Kyrgyzstan. Remote Sens. 2017, 9, 943. [Google Scholar] [CrossRef]
- Amatya, P.; Kirschbaum, D.; Stanley, T. Rainfall-induced landslide inventories for Lower Mekong based on Planet imagery and a semi-automatic mapping method. Geosci. Data J. 2022, 9, 315–327. [Google Scholar] [CrossRef]
- Amatya, P.; Kirschbaum, D.; Stanley, T.; Tanyas, H. Landslide mapping using object-based image analysis and open source tools. Eng. Geol. 2021, 282, 10. [Google Scholar] [CrossRef]
- Mondini, A.C. Measures of Spatial Autocorrelation Changes in Multitemporal SAR Images for Event Landslides Detection. Remote Sens. 2017, 9, 554. [Google Scholar] [CrossRef]
- Feng, G.C.; Ding, X.L.; Li, Z.W.; Mi, J.; Zhang, L.; Omura, M. Calibration of an InSAR-Derived Coseimic Deformation Map Associated With the 2011 Mw-9.0 Tohoku-Oki Earthquake. IEEE Geosci. Remote Sens. Lett. 2012, 9, 302–306. [Google Scholar] [CrossRef]
- Feng, G.C.; Li, Z.W.; Shan, X.J.; Zhang, L.; Zhang, G.H.; Zhu, J.J. Geodetic model of the 2015 April 25 MW 7.8 Gorkha Nepal Earthquake and MW 7.3 aftershock estimated from InSAR and GPS data. Geophys. J. Int. 2015, 203, 896–900. [Google Scholar] [CrossRef]
- Michel, R.; Avouac, J.P. Coseismic surface deformation from air photos: The Kickapoo step over in the 1992 Landers rupture. J. Geophys. Res.-Solid Earth 2006, 111, 13. [Google Scholar] [CrossRef]
- Milliner, C.; Donnellan, A. Using Daily Observations from Planet Labs Satellite Imagery to Separate the Surface Deformation between the 4 July MW 6.4 Foreshock and 5 July MW 7.1 Mainshock during the 2019 Ridgecrest Earthquake Sequence. Seismol. Res. Lett. 2020, 91, 1986–1997. [Google Scholar] [CrossRef]
- Wang, K.; Bürgmann, R. Co- and Early Postseismic Deformation Due to the 2019 Ridgecrest Earthquake Sequence Constrained by Sentinel-1 and COSMO-SkyMed SAR Data. Seismol. Res. Lett. 2020, 91, 1998–2009. [Google Scholar] [CrossRef]
- Liu, C.L.; Lay, T.; Brodsky, E.E.; Dascher-Cousineau, K.; Xiong, X. Coseismic Rupture Process of the Large 2019 Ridgecrest Earthquakes From Joint Inversion of Geodetic and Seismological Observations. Geophys. Res. Lett. 2019, 46, 11820–11829. [Google Scholar] [CrossRef]
- An, Q.; Feng, G.C.; He, L.J.; Xiong, Z.Q.; Lu, H.; Wang, X.H.; Wei, J.C. Three-Dimensional Deformation of the 2023 Turkey Mw 7.8 and Mw 7.7 Earthquake Sequence Obtained by Fusing Optical and SAR Images. Remote Sens. 2023, 15, 2656. [Google Scholar] [CrossRef]
- He, L.J.; Feng, G.C.; Hu, J.; Xu, W.B.; Liu, J.H.; Li, Z.W.; Feng, Z.X.; Wang, Y.D.; Lu, H. Surface Displacement and Source Model Separation of the Two Strongest Earthquakes During the 2019 Ridgecrest Sequence: Insights From InSAR, GPS, and Optical Data. J. Geophys. Res.-Solid Earth 2022, 127, 24. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Orbital Altitude | 630 km |
Number of Satellites | 5 |
Orbit Inclination | 97.9° |
Revisit Period | <1 day |
Swath Width | 77 km |
Spatial Resolution | 5 m |
Band 1 | Blue (440–510 nm) |
Band 2 | Green (520–590 nm) |
Band 3 | Red (630–685 nm) |
Band 4 | Red edge (690–730 nm) |
Band 5 | NIR (near infrared 760–850 nm) |
Imager | Multi-spectral push-broom imager |
Time on Orbit | >7 years |
Pair No. | Acquisition Dates of Image Pairs Master Scene–Slave Scene | Track Num. |
---|---|---|
1 | 21/04/2019–29/06/2019 | 1155 512 |
2 | 1155 513 | |
3 | 1155 612 | |
4 | 1155 613 | |
5 | 07/09/2019–21/09/2019 | 1155 512 |
6 | 1155 513 | |
7 | 1155 612 | |
8 | 1155 613 |
Acquisition Dates of Image Pairs | Track Num. | RMSE in E-W Direction (m) | RMSE in N-S Direction (m) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | ||
21/04/2019–29/06/2019 | 1155 512 | 0.812 | 0.693 | 0.799 | 0.890 | 0.712 | 0.836 | 0.699 | 0.803 | 0.867 | 0.769 |
1155 513 | 0.949 | 0.746 | 0.899 | 0.982 | 0.813 | 0.898 | 0.664 | 0.756 | 0.823 | 0.691 | |
1155 612 | 0.935 | 0.779 | 0.871 | 0.989 | 0.733 | 0.922 | 0.700 | 0.806 | 0.881 | 0.641 | |
1155 613 | 0.960 | 0.940 | 0.832 | 0.940 | 0.856 | 0.774 | 0.711 | 0.772 | 0.834 | 0.640 | |
0.914 | 0.789 | 0.850 | 0.950 | 0.779 | 0.858 | 0.694 | 0.784 | 0.851 | 0.685 | ||
07/09/2019–21/09/2019 | 1155 512 | 0.686 | 0.598 | 0.634 | 0.746 | 0.597 | 0.821 | 0.638 | 0.625 | 0.710 | 0.531 |
1155 513 | 0.813 | 0.631 | 0.730 | 0.812 | 0.610 | 0.824 | 0.615 | 0.630 | 0.697 | 0.508 | |
1155 612 | 0.893 | 0.667 | 0.666 | 0.731 | 0.676 | 1.001 | 0.714 | 0.656 | 0.698 | 0.600 | |
1155 613 | 0.976 | 0.726 | 0.781 | 0.802 | 0.714 | 0.950 | 0.660 | 0.632 | 0.651 | 0.543 | |
0.842 | 0.656 | 0.703 | 0.773 | 0.649 | 0.899 | 0.657 | 0.636 | 0.689 | 0.546 |
Pairs Num. | Acquisition Dates of Image Pairs | Track Num. |
---|---|---|
1 | 22/04/2018–23/04/2018 | 1155 612 |
2 | 20/04/2019–21/04/2019 | 1155 612 |
3 | 07/09/2019–21/09/2019 | 1155 612 |
4 | 23/04/2018–20/04/2019 | 1155 612 |
Pair Num. | Master Scene–Slave Scene | Track Num. |
---|---|---|
1 | 20/04/2019–21/09/2019 | 1155 512 |
2 | 29/06/2019–06/07/2019 | 1155 513 |
3 | 20/04/2019–21/09/2019 | 1155 612 |
4 | 09/03/2019–21/09/2019 | 1155 613 |
P594_G49 (mm) | P595_G49 (mm) | TOWG_G49 (mm) | LGWD_G49 (mm) | Offset Field before Correcting (m) | Offset Field after Correcting (m) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Uncertainties | E-W | N-S | E-W | N-S | E-W | N-S | E-W | N-S | 1.03 | 0.76 |
2.17 | 2.65 | 2.16 | 2.64 | 2.16 | 2.64 | 1.84 | 1.99 |
GNSS Station | GNSS Observations (m) | RapidEye before Error Correction (m) | RapidEye after Error Correction (m) | before Error Correction (m) | after Error Correction (m) | |
---|---|---|---|---|---|---|
E-W | P594_G49 | 0.07 | −0.75 | 0.09 | 0.82 | 0.02 |
P595_G49 | 0.52 | −0.36 | 0.30 | 0.87 | 0.22 | |
TOWG_G49 | −0.58 | 1.13 | −0.38 | 1.71 | 0.19 | |
LGWD_G49 | −0.16 | 0.81 | −0.11 | 0.97 | 0.05 | |
Q0072 | −0.11 | 0.75 | −0.15 | 0.86 | 0.04 | |
SRT | −0.25 | 1.58 | −0.16 | 1.83 | 0.09 | |
CLC | 0.41 | 0.93 | 0.43 | 0.53 | 0.02 | |
N-S | P594_G49 | −0.12 | 1.72 | −0.10 | 1.85 | 0.02 |
P595_G49 | −0.25 | −0.01 | −0.23 | 0.25 | 0.03 | |
TOWG_G49 | 0.04 | −0.51 | 0.12 | 0.56 | 0.08 | |
LGWD_G49 | 0.29 | −0.54 | 0.12 | 0.83 | 0.17 | |
Q0072 | 0.26 | −0.33 | 0.18 | 0.58 | 0.08 | |
SRT | 0.10 | −0.92 | 0.14 | 1.03 | 0.04 | |
CLC | −1.11 | −0.43 | −0.90 | 0.68 | 0.22 |
Satellite | The Number of Satellites | Spatial Resolution | Revisit Period | Swath Width |
---|---|---|---|---|
RapidEye | 5 | 5 m | 1 d | 77 km |
PlanetScope | 170 | 3/4 m | 2 d | 20 km/24.6 km |
SkySat | 13 | 0.8/1 m | >1 d | 8 km |
WorldView | 4 | 0.31/0.45/1.8/1.24 m | 1 d | 16 km/13 km |
Sentinel-2 | 2 | 10/20/60 m | 5 d | 290 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, W.; An, Q.; Feng, G.; Xiong, Z.; He, L.; Wang, Y.; Jiang, H.; Wang, X.; Li, N.; Wang, W. Error Correction of the RapidEye Sub-Pixel Correlation: A Case Study of the 2019 Ridgecrest Earthquake Sequence. Sensors 2024, 24, 4726. https://doi.org/10.3390/s24144726
Luo W, An Q, Feng G, Xiong Z, He L, Wang Y, Jiang H, Wang X, Li N, Wang W. Error Correction of the RapidEye Sub-Pixel Correlation: A Case Study of the 2019 Ridgecrest Earthquake Sequence. Sensors. 2024; 24(14):4726. https://doi.org/10.3390/s24144726
Chicago/Turabian StyleLuo, Wulinhong, Qi An, Guangcai Feng, Zhiqiang Xiong, Lijia He, Yilin Wang, Hongbo Jiang, Xiuhua Wang, Ning Li, and Wenxin Wang. 2024. "Error Correction of the RapidEye Sub-Pixel Correlation: A Case Study of the 2019 Ridgecrest Earthquake Sequence" Sensors 24, no. 14: 4726. https://doi.org/10.3390/s24144726