Pipeline Leak Detection: A Comprehensive Deep Learning Model Using CWT Image Analysis and an Optimized DBN-GA-LSSVM Framework
Abstract
:1. Introduction
- (1)
- The proposed study introduces a comprehensive model that uses CWT images that are filtered using advanced NLM and AHE. The resulting scalograms are termed ELIS.
- (2)
- A framework consisting of a deep belief network (DBN) and genetic algorithm (GA) carefully extracts informative features, while a least squares support vector machine (LSSVM) classifier accurately classifies leak and non-leak conditions.
- (3)
- The proposed approach enhances leak discrimination by successfully differentiating among patterns related to leaks and background noise. This improves accuracy and reliability in identifying leaks, particularly in a noisy environment.
- (4)
- To demonstrate the feasibility and effectiveness of the method in the real world, the proposed technique was tested on a steel pipe. The accuracy of the results highlights their potential for real-world applications.
2. Proposed Method
2.1. Processing of Acoustic Emission Images Using a CWT
2.2. Non-Local Means and Adaptive Histogram Equalization
2.3. Feature Extraction Using a Deep Belief Network Model
2.4. t-Distributed Stochastic Neighbor Embedding
2.5. LSSVM
2.6. Genetic Algorithm
3. Experimental Setup
4. Experimental Data Collection
Proposed Method: Surveillance Zone Identification
5. Result Comparison and Discussion
Suggested Approach: Comparison of Performance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
DL | deep learning |
AE | acoustic emission |
ANN | artificial neural network |
NLM | non-local mean |
AHE | adaptive histogram equalization |
GA | genetic algorithm |
LSSVM | least squares support vector machine |
CWT | continuous wavelet transform |
CNN | convolutional neural network |
References
- Rahman, I.U.; Mohammed, H.J.; Siddique, M.F.; Ullah, M.; Bamasag, A.; Alqahtani, T.; Algarni, S. Application of membrane technology in the treatment of waste liquid containing radioactive materials. J. Radioanal. Nucl. Chem. 2023, 332, 4363–4376. [Google Scholar] [CrossRef]
- Latif, J.; Shakir, M.Z.; Edwards, N.; Jaszczykowski, M.; Ramzan, N.; Edwards, V. Review on condition monitoring techniques for water pipelines. Measurement 2022, 193, 110895. [Google Scholar] [CrossRef]
- Che, T.-C.; Duan, H.-F.; Lee, P.J. Transient wave-based methods for anomaly detection in fluid pipes: A review. Mech. Syst. Signal Process. 2021, 160, 107874. [Google Scholar] [CrossRef]
- Cody, R.A.; Tolson, B.A.; Orchard, J. Detecting Leaks in Water Distribution Pipes Using a Deep Autoencoder and Hydroacoustic Spectrograms. J. Comput. Civ. Eng. 2020, 34, 881. [Google Scholar] [CrossRef]
- Korlapati, N.V.S.; Khan, F.; Noor, Q.; Mirza, S.; Vaddiraju, S. Review and analysis of pipeline leak detection methods. J. Pipeline Sci. Eng. 2022, 2, 100074. [Google Scholar] [CrossRef]
- Hao, J.; Chen, P.; Chen, J.; Li, X. Multi-task federated learning-based system anomaly detection and multi-classification for microservices architecture. Futur. Gener. Comput. Syst. 2024, 159, 77–90. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Li, Y.; Hu, Q.; Liu, C.; Liu, C. Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks. Reliab. Eng. Syst. Saf. 2022, 218, 108150. [Google Scholar] [CrossRef]
- Wang, L.; Narasimman, S.C.; Ravula, S.R.; Ukil, A. Water Ingress Detection in Low-Pressure Gas Pipelines Using Distributed Temperature Sensing System. IEEE Sensors J. 2017, 17, 3165–3173. [Google Scholar] [CrossRef]
- Cataldo, A.; Cannazza, G.; De Benedetto, E.; Giaquinto, N. A New Method for Detecting Leaks in Underground Water Pipelines. IEEE Sensors J. 2011, 12, 1660–1667. [Google Scholar] [CrossRef]
- Xu, B.; Wang, X.; Zhang, J.; Guo, Y.; Razzaqi, A.A. A Novel Adaptive Filtering for Cooperative Localization Under Compass Failure and Non-Gaussian Noise. IEEE Trans. Veh. Technol. 2022, 71, 3737–3749. [Google Scholar] [CrossRef]
- Ullah, N.; Ahmed, Z.; Kim, J.-M. Pipeline Leakage Detection Using Acoustic Emission and Machine Learning Algorithms. Sensors 2023, 23, 3226. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, L.; Liang, W.; Ding, Q. Integrated leakage detection and localization model for gas pipelines based on the acoustic wave method. J. Loss Prev. Process. Ind. 2013, 27, 74–88. [Google Scholar] [CrossRef]
- Hu, W.; Wang, T.; Chu, F. Novel Ramanujan Digital Twin for Motor Periodic Fault Monitoring and Detection. IEEE Trans. Ind. Inform. 2023, 19, 11564–11572. [Google Scholar] [CrossRef]
- Kim, S.H. Dimensionless impedance method for the transient response of pressurized pipeline system. Eng. Appl. Comput. Fluid Mech. 2022, 16, 1641–1654. [Google Scholar] [CrossRef]
- Caesarendra, W.; Kosasih, B.; Tieu, A.K.; Zhu, H.; Moodie, C.A.; Zhu, Q. Acoustic emission-based condition monitoring methods: Review and application for low speed slew bearing. Mech. Syst. Signal Process. 2016, 72–73, 134–159. [Google Scholar] [CrossRef]
- Chan, T.K.; Chin, C.S.; Zhong, X. Review of Current Technologies and Proposed Intelligent Methodologies for Water Distributed Network Leakage Detection. IEEE Access 2018, 6, 78846–78867. [Google Scholar] [CrossRef]
- Cheng, Y.; Lin, M.; Wu, J.; Zhu, H.; Shao, X. Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network. Knowl.-Based Syst. 2021, 216, 106796. [Google Scholar] [CrossRef]
- Ullah, N.; Ahmad, Z.; Siddique, M.F.; Im, K.; Shon, D.-K.; Yoon, T.-H.; Yoo, D.-S.; Kim, J.-M. An Intelligent Framework for Fault Diagnosis of Centrifugal Pump Leveraging Wavelet Coherence Analysis and Deep Learning. Sensors 2023, 23, 8850. [Google Scholar] [CrossRef]
- Elforjani, M.; Mba, D. Detecting natural crack initiation and growth in slow speed shafts with the Acoustic Emission technology. Eng. Fail. Anal. 2009, 16, 2121–2129. [Google Scholar] [CrossRef]
- Banjara, N.K.; Sasmal, S.; Voggu, S. Machine learning supported acoustic emission technique for leakage detection in pipelines. Int. J. Press. Vessel. Pip. 2020, 188, 104243. [Google Scholar] [CrossRef]
- Rai, A.; Kim, J.-M. A novel pipeline leak detection approach independent of prior failure information. Measurement 2020, 167, 108284. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Kim, T.; Park, S.J.; Kim, H.; Jung, I.D. Advanced thermal fluid leakage detection system with machine learning algorithm for pipe-in-pipe structure. Case Stud. Therm. Eng. 2023, 42, 102747. [Google Scholar] [CrossRef]
- Li, S.; Song, Y.; Zhou, G. Leak detection of water distribution pipeline subject to failure of socket joint based on acoustic emission and pattern recognition. Measurement 2018, 115, 39–44. [Google Scholar] [CrossRef]
- Xu, T.; Zeng, Z.; Huang, X.; Li, J.; Feng, H. Pipeline leak detection based on variational mode decomposition and support vector machine using an interior spherical detector. Process. Saf. Environ. Prot. 2021, 153, 167–177. [Google Scholar] [CrossRef]
- Xu, C.; Du, S.; Gong, P.; Li, Z.; Chen, G.; Song, G. An Improved Method for Pipeline Leakage Localization with a Single Sensor Based on Modal Acoustic Emission and Empirical Mode Decomposition With Hilbert Transform. IEEE Sensors J. 2020, 20, 5480–5491. [Google Scholar] [CrossRef]
- Ahmad, Z.; Nguyen, T.-K.; Kim, J.-M. Leak detection and size identification in fluid pipelines using a novel vulnerability index and 1-D convolutional neural network. Eng. Appl. Comput. Fluid Mech. 2023, 17, 2165159. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmad, Z.; Kim, C.-H.; Kim, J.-M. A Method for Pipeline Leak Detection Based on Acoustic Imaging and Deep Learning. Sensors 2022, 22, 1562. [Google Scholar] [CrossRef] [PubMed]
- Siddique, M.F.; Ahmad, Z.; Ullah, N.; Kim, J. A Hybrid Deep Learning Approach: Integrating Short-Time Fourier Transform and Continuous Wavelet Transform for Improved Pipeline Leak Detection. Sensors 2023, 23, 8079. [Google Scholar] [CrossRef]
- Pipeline Repair Guide. Applications Repairs under Pressure Solutions for Various Forms of Damage Joining Different Types of Pipe Overcoming Misaligned Pipes. 2020. Available online: https://www.hygradewater.co.nz/wp-content/uploads/2018/09/Pipeline-Repair-Guide.pdf (accessed on 12 May 2024).
- Martini, A.; Troncossi, M.; Rivola, A. Leak Detection in Water-Filled Small-Diameter Polyethylene Pipes by Means of Acoustic Emission Measurements. Appl. Sci. 2016, 7, 2. [Google Scholar] [CrossRef]
- Li, J.; Zheng, Q.; Qian, Z.; Yang, X. A novel location algorithm for pipeline leakage based on the attenuation of negative pressure wave. Process. Saf. Environ. Prot. 2019, 123, 309–316. [Google Scholar] [CrossRef]
- Idachaba, F.; Tomomewo, O. Surface pipeline leak detection using realtime sensor data analysis. J. Pipeline Sci. Eng. 2023, 3, 100108. [Google Scholar] [CrossRef]
- Das, A.K.; Suthar, D.; Leung, C.K. Machine learning based crack mode classification from unlabeled acoustic emission waveform features. Cem. Concr. Res. 2019, 121, 42–57. [Google Scholar] [CrossRef]
- Siddique, M.F.; Ahmad, Z.; Kim, J.-M. Pipeline leak diagnosis based on leak-augmented scalograms and deep learning. Eng. Appl. Comput. Fluid Mech. 2023, 17, 2225577. [Google Scholar] [CrossRef]
- Konar, P.; Saha, M.; Sil, J.; Chattopadhyay, P. Fault diagnosis of induction motor using CWT and rough-set theory. In Proceedings of the 2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA), Singapore, 16–19 April 2013; pp. 17–23. [Google Scholar]
- Jia, N.; Cheng, Y.; Liu, Y.; Tian, Y. Intelligent Fault Diagnosis of Rotating Machines Based on Wavelet Time-Frequency Diagram and Optimized Stacked Denoising Auto-Encoder. IEEE Sensors J. 2022, 22, 17139–17150. [Google Scholar] [CrossRef]
- Fedorov, V.; Ballester, C. Affine Non-Local Means Image Denoising. IEEE Trans. Image Process. 2017, 26, 2137–2148. [Google Scholar] [CrossRef]
- Fan, L.; Li, X.; Fan, H.; Feng, Y.; Zhang, C. Adaptive Texture-Preserving Denoising Method Using Gradient Histogram and Nonlocal Self-Similarity Priors. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 3222–3235. [Google Scholar] [CrossRef]
- Gao, X.; Wei, H.; Li, T.; Yang, G. A rolling bearing fault diagnosis method based on LSSVM. Adv. Mech. Eng. 2020, 12, 168781401989956. [Google Scholar] [CrossRef]
- Xiong, G.; Ma, W.; Zhao, N.; Zhang, J.; Jiang, Z.; Mao, Z. Multi-type diesel engines operating condition recogni-tion method based on stacked auto-encoder and feature transfer learning. IEEE Access 2021, 9, 31043–31052. [Google Scholar] [CrossRef]
- Van Der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2580–2605. [Google Scholar]
- Erkaymaz, O.; Yapici, I.S.; Arslan, R.U. Effects of obesity on time-frequency components of electroretinogram signal using continuous wavelet transform. Biomed Signal Process Control. 2021, 66, 102398. [Google Scholar] [CrossRef]
- Xing, J.; Meng, H.; Meng, X. An urban pipeline accident model based on system engineering and game theory. J. Loss Prev. Process. Ind. 2020, 64, 104062. [Google Scholar] [CrossRef]
- Rahimi, M.; Alghassi, A.; Ahsan, M.; Haider, J. Deep Learning Model for Industrial Leakage Detection Using Acoustic Emission Signal. Informatics 2020, 7, 49. [Google Scholar] [CrossRef]
- Shukla, H.; Piratla, K. Leakage detection in water pipelines using supervised classification of acceleration signals. Autom. Constr. 2020, 117, 103256. [Google Scholar] [CrossRef]
- Prosvirin, A.E.; Ahmad, Z.; Kim, J.-M. Global and Local Feature Extraction Using a Convolutional Autoencoder and Neural Networks for Diagnosing Centrifugal Pump Mechanical Faults. IEEE Access 2021, 9, 65838–65854. [Google Scholar] [CrossRef]
Layer | Output Shape | Activation | Regularization | Dropout |
---|---|---|---|---|
Dense | (512,) | ReLU | L2 (0.01) | None |
Batch Normalization | (512,) | - | - | None |
Dropout | (512,) | - | - | 0.5 |
Dense | (512,) | ReLU | L2 (0.01) | None |
Batch Normalization | (512,) | - | - | None |
Dropout | (512,) | - | - | 0.5 |
Dense | (256,) | ReLU | L2 (0.01) | None |
Batch Normalization | (256,) | - | - | None |
Dropout | (256,) | - | - | 0.5 |
Dense | (128,) | ReLU | L2 (0.01) | None |
Batch Normalization | (128,) | - | - | None |
Dropout | (128,) | - | - | 0.5 |
Dense | (64,) | ReLU | L2 (0.01) | None |
Batch Normalization | (64,) | - | - | None |
Dropout | (64,) | - | - | 0.5 |
Dense | (1,) | Sigmoid | None | None |
Dataset | Fluid Pressure (Bars) | Size of Leak (mm) | Duration (min) | Number of Samples Condition (Normal/L = Leak) |
---|---|---|---|---|
A | Water: 13 | 1.00 | 6 | 120/240 |
B | Gas: 13 | 0.50 | 6 | 120/240 |
C | Water: 18 | 0.70 | 6 | 120/240 |
D | Gas:18 | 0.50 | 6 | 120/240 |
Models | Accuracy | Precision | F-1 Score | Recall |
---|---|---|---|---|
Proposed | 99.66 | 99.59 | 99.59 | 99.59 |
Shukla et al. | 96.95 | 97.35 | 97.42 | 97.20 |
Ahmad et al. | 96.72 | 96.98 | 97.02 | 96.92 |
FFT-CNN | 95.13 | 95.53 | 95.09 | 95.04 |
Models | Accuracy | Precision | F-1 Score | Recall | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 mm | 0.7 mm | 0.5 mm | 1 mm | 0.7 mm | 0.5 mm | 1 mm | 0.7 mm | 0.5 mm | 1 mm | 0.7 mm | 0.5 mm | |
Proposed | 99.43 | 100.00 | 99.56 | 99.37 | 100.00 | 99.41 | 99.43 | 100.00 | 99.36 | 99.43 | 100.00 | 99.36 |
Rahimi et al. | 95.43 | 97.63 | 97.81 | 96.74 | 97.68 | 97.65 | 96.94 | 97.73 | 97.61 | 96.74 | 96.93 | 97.95 |
Ahmad et al. | 96.40 | 97.22 | 96.56 | 96.86 | 97.12 | 96.96 | 96.82 | 97.48 | 96.78 | 96.40 | 97.49 | 96.88 |
FFT-CNN | 96.67 | 95.38 | 93.33 | 96.69 | 95.89 | 94.02 | 96.67 | 95.26 | 93.33 | 96.64 | 95.22 | 93.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddique, M.F.; Ahmad, Z.; Ullah, N.; Ullah, S.; Kim, J.-M. Pipeline Leak Detection: A Comprehensive Deep Learning Model Using CWT Image Analysis and an Optimized DBN-GA-LSSVM Framework. Sensors 2024, 24, 4009. https://doi.org/10.3390/s24124009
Siddique MF, Ahmad Z, Ullah N, Ullah S, Kim J-M. Pipeline Leak Detection: A Comprehensive Deep Learning Model Using CWT Image Analysis and an Optimized DBN-GA-LSSVM Framework. Sensors. 2024; 24(12):4009. https://doi.org/10.3390/s24124009
Chicago/Turabian StyleSiddique, Muhammad Farooq, Zahoor Ahmad, Niamat Ullah, Saif Ullah, and Jong-Myon Kim. 2024. "Pipeline Leak Detection: A Comprehensive Deep Learning Model Using CWT Image Analysis and an Optimized DBN-GA-LSSVM Framework" Sensors 24, no. 12: 4009. https://doi.org/10.3390/s24124009
APA StyleSiddique, M. F., Ahmad, Z., Ullah, N., Ullah, S., & Kim, J. -M. (2024). Pipeline Leak Detection: A Comprehensive Deep Learning Model Using CWT Image Analysis and an Optimized DBN-GA-LSSVM Framework. Sensors, 24(12), 4009. https://doi.org/10.3390/s24124009