The Feasibility of Semi-Continuous and Multi-Frequency Thoracic Bioimpedance Measurements by a Wearable Device during Fluid Changes in Hemodialysis Patients
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Data Collection
2.3. Bioimpedance Signal Processing
2.4. Statistical Analysis
2.4.1. Descriptive Approach: The Global Evolution during and In-Between the Hemodialysis Sessions
2.4.2. Selective Approach: Comparing the Slopes of 8 and 160 kHz during the First 180 min of Hemodialysis Based on Single-Point Measurements
2.4.3. Integrated Approach: Analyzing Semi-Continuous Measurements during Hemodialysis and the Interdialytic Measurement
3. Results
3.1. Baseline Characteristics
3.2. Bioimpedance Data Quality
3.3. Descriptive Characteristics of the Bioimpedance Signal over Time
3.4. Selective Analysis of the Slopes
3.5. An Integrated Approach of Analyzing Semi-Continuous Measurements
4. Discussion
4.1. Technical Feasibility of the Wearable Device
4.2. Clinical/Pathophysiological Feasibility
4.2.1. Semi-Continuous and Multi-Frequency Measurements Enable the Interpretation of Fluid Dynamics during Hemodialysis
4.2.2. Multi-frequency Bioimpedance Measurements during the Interdialytic Interval Provide Valuable Information on Fluid Gain
4.3. Personalized Feasibility
4.4. Limitations
4.5. Clinical Implementation and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gomez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gomez, J.; Lilienthal Heitmann, B.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Lindeboom, L.; Lee, S.; Wieringa, F.; Groenendaal, W.; Basile, C.; van der Sande, F.; Kooman, J. On the potential of wearable bioimpedance for longitudinal fluid monitoring in end-stage kidney disease. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2021, 37, 2048–2054. [Google Scholar] [CrossRef]
- Metry, G.; Mallmin, H.; Wikström, B.; Danielson, B.G. Proportional changes in body fluid with hemodialysis evaluated by dual-energy X-ray absorptiometry and transthoracic bioimpedance with particular emphasis on the thoracic region. Artif. Organs 1997, 21, 969–976. [Google Scholar] [CrossRef]
- Schoutteten, M.K.; Vranken, J.; Lee, S.; Smeets, C.J.P.; De Cannière, H.; Van Hoof, C.; Peeters, J.; Groenendaal, W.; Vandervoort, P.M. Towards personalized fluid monitoring in haemodialysis patients: Thoracic bioimpedance signal shows strong correlation with fluid changes, a cohort study. BMC Nephrol. 2020, 21, 264. [Google Scholar] [CrossRef]
- Shulman, T.; Heidenheim, A.P.; Kianfar, C.; Shulman, S.M.; Lindsay, R.M. Preserving central blood volume: Changes in body fluid compartments during hemodialysis. ASAIO J. Am. Soc. Artif. Intern. Organs 1992 2001, 47, 615–618. [Google Scholar] [CrossRef]
- Swatowski, A.; Wizemann, V.; Załuska, W.; Ksizek, A. Thoracic impedance measurements during orthostatic change test and during hemodialysis in hemodialyzed patients. ASAIO J. Am. Soc. Artif. Intern. Organs 1992 2004, 50, 581–585. [Google Scholar] [CrossRef]
- Saunders, C.E. The use of transthoracic electrical bioimpedance in assessing thoracic fluid status in emergency department patients. Am. J. Emerg. Med. 1988, 6, 337–340. [Google Scholar] [CrossRef]
- Matsushita, K.; Ballew, S.H.; Wang, A.Y.; Kalyesubula, R.; Schaeffner, E.; Agarwal, R. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat. Rev. Nephrol. 2022, 18, 696–707. [Google Scholar] [CrossRef]
- Booth, J.; Pinney, J.; Davenport, A. Do changes in relative blood volume monitoring correlate to hemodialysis-associated hypotension? Nephron. Clin. Pract. 2011, 117, c179–c183. [Google Scholar] [CrossRef]
- Dasselaar, J.J.; van der Sande, F.M.; Franssen, C.F. Critical evaluation of blood volume measurements during hemodialysis. Blood Purif. 2012, 33, 177–182. [Google Scholar] [CrossRef]
- Keane, D.F.; Baxter, P.; Lindley, E.; Rhodes, L.; Pavitt, S. Time to Reconsider the Role of Relative Blood Volume Monitoring for Fluid Management in Hemodialysis. ASAIO J. Am. Soc. Artif. Intern. Organs 1992 2018, 64, 812–818. [Google Scholar] [CrossRef]
- Reddan, D.N.; Szczech, L.A.; Hasselblad, V.; Lowrie, E.G.; Lindsay, R.M.; Himmelfarb, J.; Toto, R.D.; Stivelman, J.; Winchester, J.F.; Zillman, L.A.; et al. Intradialytic blood volume monitoring in ambulatory hemodialysis patients: A randomized trial. J. Am. Soc. Nephrol. JASN 2005, 16, 2162–2169. [Google Scholar] [CrossRef]
- Agarwal, R.; Andersen, M.J. Prognostic importance of clinic and home blood pressure recordings in patients with chronic kidney disease. Kidney Int. 2006, 69, 406–411. [Google Scholar] [CrossRef]
- Anand, G.; Yu, Y.; Lowe, A.; Kalra, A. Bioimpedance analysis as a tool for hemodynamic monitoring: Overview, methods and challenges. Physiol. Meas. 2021, 42, 03TR01. [Google Scholar] [CrossRef]
- Anand, I.S.; Doan, A.D.; Ma, K.W.; Toth, J.A.; Geyen, K.J.; Otterness, S.; Chakravarthy, N.; Katra, R.P.; Libbus, I. Monitoring changes in fluid status with a wireless multisensor monitor: Results from the Fluid Removal During Adherent Renal Monitoring (FARM) study. Congest. Heart Fail. 2012, 18, 32–36. [Google Scholar] [CrossRef]
- Vonk Noordegraaf, A.; van der Meer, B.J.; de Vries, J.P.; de Vries, P.M. Determination of the relation between alterations of total body water and thoracic fluid content during ultrafiltration by bioelectrical impedance analysis. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. -Eur. Ren. Assoc. 1995, 10, 382–385. [Google Scholar]
- Schoutteten, M.K.; Lindeboom, L.; Brys, A.; Lanssens, D.; Smeets, C.J.P.; De Cannière, H.; De Moor, B.; Peeters, J.; Heylen, L.; Van Hoof, C.; et al. Comparison of whole body versus thoracic bioimpedance in relation to ultrafiltration volume and systolic blood pressure during hemodialysis. J. Appl. Physiol. 2023, 135, 1330–1338. [Google Scholar] [CrossRef]
- Raimann, J.G.; Zhu, F.; Wang, J.; Thijssen, S.; Kuhlmann, M.K.; Kotanko, P.; Levin, N.W.; Kaysen, G.A. Comparison of fluid volume estimates in chronic hemodialysis patients by bioimpedance, direct isotopic, and dilution methods. Kidney Int. 2014, 85, 898–908. [Google Scholar] [CrossRef]
- Patel, R.V.; Matthie, J.R.; Withers, P.O.; Peterson, E.L.; Zarowitz, B.J. Estimation of total body and extracellular water using single- and multiple-frequency bioimpedance. Ann. Pharmacother. 1994, 28, 565–569. [Google Scholar] [CrossRef]
- Van Helleputte, N.; Konijnenburg, M.; Pettine, J.; Jee, D.W.; Kim, H.; Morgado, A.; Yazicioglu, R.F. A 345 µW Multi-Sensor Biomedical SoC with Bio-Impedance, 3-Channel ECG, Motion Artifact Reduction, and Integrated DSP. IEEE J. Solid-State Circuits 2015, 50, 230–244. [Google Scholar] [CrossRef]
- Jaffrin, M.Y.; Morel, H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med. Eng. Phys. 2008, 30, 1257–1269. [Google Scholar] [CrossRef]
- Lee, S.; Squillace, G.; Smeets, C.; Vandecasteele, M.; Grieten, L.; de Francisco, R.; Van Hoof, C. Congestive heart failure patient monitoring using wearable Bio-impedance sensor technology. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; Volume 2015, pp. 438–441. [Google Scholar] [CrossRef]
- Lang, F.; Busch, G.L.; Ritter, M.; Völkl, H.; Waldegger, S.; Gulbins, E.; Häussinger, D. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 1998, 78, 247–306. [Google Scholar] [CrossRef]
- Davenport, A. Why is Intradialytic Hypotension the Commonest Complication of Outpatient Dialysis Treatments? Kidney Int. Rep. 2023, 8, 405–418. [Google Scholar] [CrossRef]
- Ohashi, Y.; Tai, R.; Aoki, T.; Mizuiri, S.; Ogura, T.; Tanaka, Y.; Okada, T.; Aikawa, A.; Sakai, K. The Associations of Malnutrition and Aging with Fluid Volume Imbalance between Intra- and Extracellular Water in Patients with Chronic Kidney Disease. J. Nutr. Health Aging 2015, 19, 986–993. [Google Scholar] [CrossRef]
- Rats, M. Ageing and changes in body composition: The importance of valid measurements. In Food for the Ageing Population, 1st ed.; Woodhead Publishing Limited: Sawston, UK, 2009. [Google Scholar]
- Simpson, J.A.; Lobo, D.N.; Anderson, J.A.; Macdonald, I.A.; Perkins, A.C.; Neal, K.R.; Allison, S.P.; Rowlands, B.J. Body water compartment measurements: A comparison of bioelectrical impedance analysis with tritium and sodium bromide dilution techniques. Clin. Nutr. 2001, 20, 339–343. [Google Scholar] [CrossRef]
- Huynh, T.H.; Jafari, R.; Chung, W.Y. A Robust Bioimpedance Structure for Smartwatch-Based Blood Pressure Monitoring. Sensors 2018, 18, 2095. [Google Scholar] [CrossRef]
- Wang, T.W.; Syu, J.Y.; Chu, H.W.; Sung, Y.L.; Chou, L.; Escott, E.; Escott, O.; Lin, T.T.; Lin, S.F. Intelligent Bio-Impedance System for Personalized Continuous Blood Pressure Measurement. Biosensors 2022, 12, 150. [Google Scholar] [CrossRef]
- Valentinuzzi, M.E.; Morucci, J.P.; Felice, C.J. Bioelectrical impedance techniques in medicine. Part II: Monitoring of physiological events by impedance. Crit. Rev. Biomed. Eng. 1996, 24, 353–466. [Google Scholar] [CrossRef]
- Yu, S.J.; Kim, D.H.; Oh, D.J.; Yu, S.H.; Kang, E.T. Assessment of fluid shifts of body compartments using both bioimpedance analysis and blood volume monitoring. J. Korean Med. Sci. 2006, 21, 75–80. [Google Scholar] [CrossRef]
- Fisch, B.J.; Spiegel, D.M. Assessment of excess fluid distribution in chronic hemodialysis patients using bioimpedance spectroscopy. Kidney Int. 1996, 49, 1105–1109. [Google Scholar] [CrossRef]
- Jaffrin, M.Y.; Fenech, M.; de Fremont, J.F.; Tolani, M. Continuous monitoring of plasma, interstitial, and intracellular fluid volumes in dialyzed patients by bioimpedance and hematocrit measurements. ASAIO J. Am. Soc. Artif. Intern. Organs 1992 2002, 48, 326–333. [Google Scholar] [CrossRef]
- Kimura, G.; Van Stone, J.C.; Bauer, J.H.; Keshaviah, P.R. A simulation study on transcellular fluid shifts induced by hemodialysis. Kidney Int. 1983, 24, 542–548. [Google Scholar] [CrossRef]
- Sarkar, S.R.; Wystrychowski, G.; Zhu, F.; Usvyat, L.A.; Kotanko, P.; Levin, N.W. Fluid dynamics during hemodialysis in relationship to sodium gradient between dialysate and plasma. ASAIO J. Am. Soc. Artif. Intern. Organs 1992 2007, 53, 339–342. [Google Scholar] [CrossRef]
- Jain, A.K.; Lindsay, R.M. Intra and extra cellular fluid shifts during the inter dialytic period in conventional and daily hemodialysis patients. ASAIO J. Am. Soc. Artif. Intern. Organs 1992 2008, 54, 100–103. [Google Scholar] [CrossRef]
- Schotman, J.M.; van Borren, M.; Kooistra, M.P.; Doorenbos, C.J.; de Boer, H. Towards personalized hydration assessment in patients, based on measurement of total body electrical resistance: Back to basics. Clin. Nutr. ESPEN 2020, 35, 116–122. [Google Scholar] [CrossRef]
Abbreviation | Variable |
---|---|
Session 1 for the ith patient | |
Home measurement for the ith patient | |
Session 2 for the ith patient | |
Resistance signals at 8 kHz for the ith patient | |
Resistance signals at 160 kHz for the ith patient | |
jth time point for the ith patient | |
Subject-specific intercept for session 1 | |
Subject-specific intercept for session 2 | |
Subject-specific slope for session 1 | |
Subject-specific slope for session 2 | |
Outcome, the bioimpedance signal for patient i at time point j | |
Error term for patient i at time point j | |
β | Estimates of the fixed effects |
Total Cohort (n = 68) | |
---|---|
Age (years) | 70.4 ± 13.2 |
Gender (male) | 46 (67.4%) |
BMI (kg/m2) a | 26.3 ± 5.5 |
Obesity b | 13 (24.1%) |
Fistula—Hickmann catheter | 31 (45.6%)–37 (54.4%) |
Kt/V | 1.4 ± 0.3 |
Mean pre-dialysis SBP/DBP (mmHg) | 135.7 ± 20.3/66.1 ± 16.4 |
Mean plasma sodium concentration (mmol/L)
| 138.7 138.3 |
Dialysis vintage (years) | 3.9 ± 3.7 |
UFV (mL) | 1539.7 ± 897.4 |
Diabetes mellitus | 31 (45.6%) |
Heart failure c | 25 (36.2%) |
COPD | 6 (11.1%) |
Estimate | Standard Error | |
---|---|---|
Variance (Int session 1) | 244.98 | 52.46 |
Covariance (Int session 1, Int session 2) | 218.98 | 49.58 |
Variance (Int session 2) | 241.93 | 52.15 |
Covariance (Int session 1, Slope session 1) | 2.56 | 0.95 |
Covariance (Int session 2, Slope session 1) | 3.1 | 0.98 |
Variance (Slope session 1) | 0.13 | 0.03 |
Covariance (Int session 1, Slope session 2) | 2.06 | 0.74 |
Covariance (Int session 1, Slope session 2) | 2.23 | 0.74 |
Covariance (Slope session 1, Slope session 2) | 0.08 | 0.02 |
Variance (Slope session 2) | 0.07 | 0.02 |
Residual | 12.66 | 0.29 |
Effect | Frequency | Estimate | Standard Error | t-Value | p Value | 95% Confidence Interval |
---|---|---|---|---|---|---|
End session 1 versus home measurement | 8 | 2.27 | 3.19 | 0.71 | 0.477 | “−3.98”–“8.51” |
160 | −0.84 | 3.19 | −0.26 | 0.793 | “−7.09”–“5.41” | |
Start session 2 versus home measurement | 8 | −5.28 | 2.37 | −2.23 | 0.026 | “−9.93”–“−0.63” |
160 | −5.28 | 2.37 | −2.23 | 0.026 | “−9.93”–“−0.63” | |
Start session 1 versus start session 2 | 8 | −0.12 | 1.11 | −0.11 | 0.912 | “−2.29”–“2.05” |
160 | −0.12 | 1.11 | −0.11 | 0.912 | “−2.29”–“2.05” | |
End session 1 versus end session 2 | 8 | 0.21 | 1.25 | 0.17 | 0.864 | “−2.23”–“2.66” |
160 | 0.21 | 1.25 | 0.17 | 0.864 | “−2.23”–“2.66” |
Effect | Frequency | Session | Estimate | Standard Error | t-Value | p Value |
---|---|---|---|---|---|---|
Intercept | 36.148 | 0.417 | 86.67 | <0.0001 | ||
Frequency | 8 | 6.212 | 0.289 | 21.47 | <0.0001 | |
Frequency | 160 | 0 | - | - | - | |
Session | 1 | −5.401 | 2.376 | −2.27 | 0.023 | |
Session | 2 | −5.279 | 2.371 | −2.23 | 0.026 | |
Session | Home | 0 | - | - | - | |
Time × session ( | 1 | 0.045 | 0.079 | 0.58 | 0.564 | |
Time × session ( | 2 | 0.072 | 0.070 | 1.04 | 0.300 | |
Time × session | Home | 0 | - | - | - | |
Time × time × session | 1 | 0.006 | 0.003 | 2.23 | 0.026 | |
Time × time × session | 2 | 0.004 | 0.003 | 1.70 | 0.089 | |
Time × time × session | home | 0 | - | - | - | |
Time × frequency | 8 | 0.238 | 0.063 | 3.78 | 0.0002 | |
Time × frequency | 160 | 0 | - | - | - | |
Time × time × frequency | 8 | −0.005 | 0.003 | −1.58 | 0.114 | |
Time × time × frequency | 160 | 0 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoutteten, M.K.; Lindeboom, L.; De Cannière, H.; Pieters, Z.; Bruckers, L.; Brys, A.D.H.; van der Heijden, P.; De Moor, B.; Peeters, J.; Van Hoof, C.; et al. The Feasibility of Semi-Continuous and Multi-Frequency Thoracic Bioimpedance Measurements by a Wearable Device during Fluid Changes in Hemodialysis Patients. Sensors 2024, 24, 1890. https://doi.org/10.3390/s24061890
Schoutteten MK, Lindeboom L, De Cannière H, Pieters Z, Bruckers L, Brys ADH, van der Heijden P, De Moor B, Peeters J, Van Hoof C, et al. The Feasibility of Semi-Continuous and Multi-Frequency Thoracic Bioimpedance Measurements by a Wearable Device during Fluid Changes in Hemodialysis Patients. Sensors. 2024; 24(6):1890. https://doi.org/10.3390/s24061890
Chicago/Turabian StyleSchoutteten, Melanie K., Lucas Lindeboom, Hélène De Cannière, Zoë Pieters, Liesbeth Bruckers, Astrid D. H. Brys, Patrick van der Heijden, Bart De Moor, Jacques Peeters, Chris Van Hoof, and et al. 2024. "The Feasibility of Semi-Continuous and Multi-Frequency Thoracic Bioimpedance Measurements by a Wearable Device during Fluid Changes in Hemodialysis Patients" Sensors 24, no. 6: 1890. https://doi.org/10.3390/s24061890