Highly Coupled Seven-Core Fiber for Ratiometric Anti-Phase Sensing
Abstract
:1. Introduction
2. Principle of Operation
3. Sensor Construction and Experimental Setup
4. Results
4.1. Spectral Characterization
4.2. Single-Wavelength Implementation
4.3. Stability Tests
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, J.; Liu, C.; Wu, T.; Zeng, W.; Hu, B.; Zhou, S.; Wu, L. A review of current status of ratiometric molecularly imprinted electrochemical sensors: From design to applications. Anal. Chim. Acta 2022, 1230, 340273. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, X.; Yang, Y.; Chen, L.; Yu, D. Research progress on ratiometric electrochemical sensing of mycotoxins. J. Electroanal. Chem. 2022, 929, 117115. [Google Scholar] [CrossRef]
- Yang, T.; Yu, R.; Yan, Y.; Zeng, H.; Luo, S.; Liu, N.; Morrin, A.; Luo, X.; Li, W. A review of ratiometric electrochemical sensors: From design schemes to future prospects. Sens. Actuators B Chem. 2018, 274, 501–516. [Google Scholar] [CrossRef]
- Jin, H.; Gui, R.; Yu, J.; Lv, W.; Wang, Z. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors. Biosens. Bioelectron. 2017, 91, 523–537. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, X.; Wei, H. Ratiometric electrochemical sensor for effective and reliable detection of ascorbic acid in living brains. Anal. Chem. 2015, 87, 8889–8895. [Google Scholar] [CrossRef]
- Yang, J.; Hu, Y.; Li, Y. Molecularly imprinted polymer-decorated signal on-off ratiometric electrochemical sensor for selective and robust dopamine detection. Biosens. Bioelectron. 2019, 135, 224–230. [Google Scholar] [CrossRef]
- Hou, J.; Jia, P.; Yang, K.; Bu, T.; Zhao, S.; Li, L.; Wang, L. Fluorescence and Colorimetric Dual-Mode Ratiometric Sensor Based on Zr–Tetraphenylporphyrin Tetrasulfonic Acid Hydrate Metal–Organic Frameworks for Visual Detection of Copper Ions. ACS Appl. Mater. Interfaces 2022, 14, 13848–13857. [Google Scholar] [CrossRef]
- Gan, Z.; Zhang, T.; An, X.; Tan, Q.; Zhen, S.; Hu, X. A novel fluorescence-scattering ratiometric sensor based on Fe-NC nanozyme with robust oxidase-like activity. Sens. Actuators B Chem. 2022, 368, 132181. [Google Scholar] [CrossRef]
- HeeáLee, M.; SeungáKim, J. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem. Soc. Rev. 2015, 44, 4185–4191. [Google Scholar]
- Park, S.H.; Kwon, N.; Lee, J.H.; Yoon, J.; Shin, I. Synthetic ratiometric fluorescent probes for detection of ions. Chem. Soc. Rev. 2020, 49, 143–179. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, C.; Yang, Z.; Chen, J.; He, Y.; Jiao, Y.; He, W.; Qiu, L.; Cen, J.; Guo, Z. A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria. Angew. Chem. 2013, 125, 1732–1735. [Google Scholar] [CrossRef]
- Xie, F.T.; Zhao, X.L.; Chi, K.N.; Yang, T.; Hu, R.; Yang, Y.H. Fe-MOFs as signal probes coupling with DNA tetrahedral nanostructures for construction of ratiometric electrochemical aptasensor. Anal. Chim. Acta 2020, 1135, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Du, L.; Zhang, Y.; Tang, D.; Du, Y. Molecular beacon mediated circular strand displacement strategy for constructing a ratiometric electrochemical deoxyribonucleic acid sensor. Anal. Chim. Acta 2015, 883, 67–73. [Google Scholar] [CrossRef]
- Wang, L.; Xu, M.; Xie, Y.; Qian, C.; Ma, W.; Wang, L.; Song, Y. Ratiometric electrochemical glucose sensor based on electroactive Schiff base polymers. Sens. Actuators B Chem. 2019, 285, 264–270. [Google Scholar] [CrossRef]
- Gong, C.; Shen, Y.; Song, Y.; Wang, L. On-off ratiometric electrochemical biosensor for accurate detection of glucose. Electrochim. Acta 2017, 235, 488–494. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, C.; Yin, T.; Ou, S.; Sun, X.; Wen, X.; Zhang, L.; Tang, D.; Yin, X. Functionalized poly (ionic liquid) as the support to construct a ratiometric electrochemical biosensor for the selective determination of copper ions in AD rats. Biosens. Bioelectron. 2017, 87, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Chai, X.; Zhang, L.; Tian, Y. Ratiometric electrochemical sensor for selective monitoring of cadmium ions using biomolecular recognition. Anal. Chem. 2014, 86, 10668–10673. [Google Scholar] [CrossRef]
- Qian, J.; Wang, K.; Wang, C.; Ren, C.; Liu, Q.; Hao, N.; Wang, K. Ratiometric fluorescence nanosensor for selective and visual detection of cadmium ions using quencher displacement-induced fluorescence recovery of CdTe quantum dots-based hybrid probe. Sens. Actuators B Chem. 2017, 241, 1153–1160. [Google Scholar] [CrossRef]
- Yin, S.; Ruffin, P.B.; Francis, T.S. (Eds.) . Fiber Optic Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Hegde, G.; Asokan, S.; Hegde, G. Fiber Bragg grating sensors for aerospace applications: A review. ISSS J. Micro Smart Syst. 2022, 11, 257–275. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, F.; Han, Z.; Cheng, P.; Ding, Z. Research Advances on Fiber-Optic SPR Sensors with Temperature Self-Compensation. Sensors 2023, 23, 644. [Google Scholar] [CrossRef]
- Cuando-Espitia, N.; Fuentes-Fuentes, M.A.; May-Arrioja, D.A.; Hernández-Romano, I.; Martínez-Manuel, R.; Torres-Cisneros, M. Dual-point refractive index measurements using coupled seven-core fibers. J. Light. Technol. 2021, 39, 310–319. [Google Scholar] [CrossRef]
- Zhu, C.; Zheng, H.; Alsalman, O.; Naku, W.; Ma, L. Simultaneous and Multiplexed Measurement of Curvature and Strain Based on Optical Fiber Fabry-Perot Interferometric Sensors. Photonics 2023, 10, 580. [Google Scholar] [CrossRef]
- Marrujo-García, S.; Hernández-Romano, I.; Torres-Cisneros, M.; May-Arrioja, D.A.; Minkovich, V.P.; Monzón-Hernández, D. Temperature-independent curvature sensor based on in-fiber Mach–Zehnder interferometer using hollow-core fiber. J. Light. Technol. 2020, 38, 4166–4173. [Google Scholar] [CrossRef]
- Qi, K.; Zhang, Y.; Sun, J.; Wu, Y. Measurements of liquid surface tension and refractive index using a tapered microfiber. Opt. Laser Technol. 2023, 161, 109170. [Google Scholar] [CrossRef]
- Guzman-Sepulveda, J.R.; May-Arrioja, D.A.; Fuentes-Fuentes, M.A.; Cuando-Espitia, N.; Torres-Cisneros, M.; Gonzalez-Gutierrez, K.; LiKamWa, P. All-fiber measurement of surface tension using a two-hole fiber. Sensors 2020, 20, 4219. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Feng, Y.; Wen, J.; Huang, L.; Dong, J. Integrated fiber-optic sensor based on inscription of FBG in seven-core fiber for curvature and temperature measurements. Opt. Fiber Technol. 2023, 75, 103197. [Google Scholar] [CrossRef]
- Cuando-Espitia, N.; Fuentes-Fuentes, M.A.; Velázquez-Benítez, A.; Amezcua, R.; Hernández-Cordero, J.; May-Arrioja, D.A. Vernier effect using in-line highly coupled multicore fibers. Sci. Rep. 2021, 11, 18383. [Google Scholar] [CrossRef]
- Park, E.J.; Reid, K.R.; Tang, W.; Kennedy, R.T.; Kopelman, R. Ratiometric fiber optic sensors for the detection of inter-and intra-cellular dissolved oxygen. J. Mater. Chem. 2005, 15, 2913–2919. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Jin, Q.; Jia, D.; Liu, T. Ratiometric Optical Fiber Dissolved Oxygen Sensor Based on Fluorescence Quenching Principle. Sensors 2022, 22, 4811. [Google Scholar] [CrossRef]
- Steinegger, A.; Wolfbeis, O.S.; Borisov, S.M. Optical sensing and imaging of pH values: Spectroscopies, materials, and applications. Chem. Rev. 2020, 120, 12357–12489. [Google Scholar] [CrossRef]
- Rosenberg, M.; Laursen, B.W.; Frankær, C.G.; Sørensen, T.J. A fluorescence intensity ratiometric fiber optics–based chemical sensor for monitoring pH. Adv. Mater. Technol. 2018, 3, 1800205. [Google Scholar] [CrossRef]
- Zhao, L.; Li, G.; Gan, J.; Yang, Z. Hydrogel optical fiber based ratiometric fluorescence sensor for highly sensitive pH detection. J. Light. Technol. 2021, 39, 6653–6659. [Google Scholar] [CrossRef]
- Yuan, X.L.; Wu, X.Y.; He, M.; Lai, J.P.; Sun, H. A ratiometric fiber optic sensor based on CdTe QDs functionalized with glutathione and mercaptopropionic acid for on-site monitoring of antibiotic ciprofloxacin in aquaculture water. Nanomaterials 2022, 12, 829. [Google Scholar] [CrossRef] [PubMed]
- May-Arrioja, D.A.; Fuentes-Fuentes, M.A.; Hernández-Romano, I.; Martínez-Manuel, R.; Cuando-Espitia, N. Ratiometric Temperature Sensing Using Highly Coupled Seven-Core Fibers. Sensors 2023, 23, 484. [Google Scholar] [CrossRef]
- Van Newkirk, A.; Antonio-Lopez, J.E.; Salceda-Delgado, G.; Piracha, M.U.; Amezcua-Correa, R.; Schülzgen, A. Multicore fiber sensors for simultaneous measurement of force and temperature. IEEE Photonics Technol. Lett. 2015, 27, 1523–1526. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Liu, H.; Chen, J.; Yang, P.; She, L.; Chen, F.; Shao, J.; Guan, Z.; Zhang, Z.; et al. High-sensitive bending sensor based on a seven-core fiber. Opt. Commun. 2021, 483, 126617. [Google Scholar] [CrossRef]
- Vallejo-Carrillo, R.G.; Salceda-Delgado, G.; Torres-Torres, M.; Amezcua-Correa, R.; Antonio-Lopez, J.E. Tuning of optical fiber laser based on super-mode interference in a seven-core fiber. Laser Phys. 2023, 33, 045103. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Ling, Q.; Zhang, Q.; Luo, W.; Yu, Z.; Tao, C.; Jiang, X.; Chen, H.; Guan, Z.; et al. Seven-core fiber embedded ultra-long period grating for curvature, torsion or temperature sensing. Opt. Commun. 2023, 536, 129351. [Google Scholar] [CrossRef]
- Guzman-Sepulveda, J.R.; May-Arrioja, D.A. In-fiber directional coupler for high-sensitivity curvature measurement. Opt. Express 2013, 21, 11853–11861. [Google Scholar] [CrossRef]
- Salceda-Delgado, G.; Van Newkirk, A.; Antonio-Lopez, J.E.; Martinez-Rios, A.; Schülzgen, A.; Correa, R.A. Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber. Opt. Lett. 2015, 40, 1468–1471. [Google Scholar] [CrossRef]
- Antonio-Lopez, J.E.; Eznaveh, Z.S.; LiKamWa, P.; Schülzgen, A.; Amezcua-Correa, R. Multicore fiber sensor for high-temperature applications up to 1000 C. Opt. Lett. 2014, 39, 4309–4312. [Google Scholar] [CrossRef] [PubMed]
- Van Newkirk, A.; Antonio-Lopez, E.; Salceda-Delgado, G.; Amezcua-Correa, R.; Schülzgen, A. Optimization of multicore fiber for high-temperature sensing. Opt. Lett. 2014, 39, 4812–4815. [Google Scholar] [CrossRef] [PubMed]
Structure | Sensing Mechanism | Sensitivity | Temperature Range | Reference | |
---|---|---|---|---|---|
Spectral | R.U. | ||||
FBGs inscribed in each SCF core | Sensing temperature through different curvatures | 9.97 pm/°C | NA | 30–70 °C | [27] |
Two SMF-SCF-SMF devices | Temperature-induced spectral shift | 321 pm/°C | NA | 26–150 °C | [28] |
SMF-SCF -SMF | Temperature-induced spectral shift | 29 pm/°C | NA | 22–134° C | [36] |
SMF-SCF-SMF | Temperature-induced spectral shift | 100–300 °C: ~28.7 pm/°C. 300–1000 °C: ~51.7 pm/°C | NA | 100–1000 °C | [42] |
SMF-SCF-SMF | Temperature-induced spectral shift | 43 pm/°C | NA | 25–1000 °C | [43] |
Two SMF-SCF-SMF devices | Ratiometric temperature sensing | 32 pm/°C | −0.0021 R.U./°C | 25–400 °C | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuando-Espitia, N.; Camarillo-Avilés, A.; May-Arrioja, D.A.; Hernández-Romano, I.; Torres-Cisneros, M. Highly Coupled Seven-Core Fiber for Ratiometric Anti-Phase Sensing. Sensors 2023, 23, 7241. https://doi.org/10.3390/s23167241
Cuando-Espitia N, Camarillo-Avilés A, May-Arrioja DA, Hernández-Romano I, Torres-Cisneros M. Highly Coupled Seven-Core Fiber for Ratiometric Anti-Phase Sensing. Sensors. 2023; 23(16):7241. https://doi.org/10.3390/s23167241
Chicago/Turabian StyleCuando-Espitia, Natanael, Andrés Camarillo-Avilés, Daniel A. May-Arrioja, Iván Hernández-Romano, and Miguel Torres-Cisneros. 2023. "Highly Coupled Seven-Core Fiber for Ratiometric Anti-Phase Sensing" Sensors 23, no. 16: 7241. https://doi.org/10.3390/s23167241
APA StyleCuando-Espitia, N., Camarillo-Avilés, A., May-Arrioja, D. A., Hernández-Romano, I., & Torres-Cisneros, M. (2023). Highly Coupled Seven-Core Fiber for Ratiometric Anti-Phase Sensing. Sensors, 23(16), 7241. https://doi.org/10.3390/s23167241