Effects of Harvesting Grabbing Type on Grabbing Force and Leaf Injury of Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydroponic Lettuce for Experiment
2.2. Experimental Equipment
2.3. Experimental Methods
2.3.1. Grabbing Types of Flexible Fingers
2.3.2. Grabbing Force Measurement and Grabbing Process Analysis by High-Speed Camera
2.3.3. Measurement of Leaves Injury Area by Image Processing
3. Results and Discussion
3.1. The Curves of Grabbing Force and Grabbing Process Analysis
3.2. The Influence of Grabbing Position on Grabbing Force
3.3. Effect of Grabbing Type on Leaves Injury Area
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an advanced technique for vegetable production: An overview. J. Soil Water Conserv. 2018, 17, 364–371. [Google Scholar] [CrossRef]
- Kozai, T. Current Situation and Perspectives of Plant Factory with Artificial Light. Sen’i Gakkaishi 2014, 70, 94–98. [Google Scholar] [CrossRef]
- Li, J.-Y.; Li, L.; Wang, H.-H.; Ferentinos, K.P.; Li, M.-Z.; Sigrimis, N. Proactive energy management of solar greenhouses with risk assessment to enhance smart specialisation in China. Biosyst. Eng. 2017, 158, 10–22. [Google Scholar] [CrossRef]
- Ohara, H.; Hirai, T.; Kouno, K.; Nishiura, Y. Automatic Plant Cultivation System (Automated Plant Factory). Environ. Control Biol. 2015, 53, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Birrell, S.; Hughes, J.; Cai, J.-Y.; Iida, F. A field-tested robotic harvesting system for iceberg lettuce. J. Field Robot. 2020, 37, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.-N.; Gao, J.-M.; Tunio, M.H.; Wang, L. Study on the Identification of Mildew Disease of Cuttings at the Base of Mulberry Cuttings by Aeroponics Rapid Propagation Based on a BP Neural Network. Agronomy 2022, 13, 106. [Google Scholar] [CrossRef]
- Nang, V.N.; Yamane, S. Development of prototype harvester for head lettuce. Eng. Agric. Environ. Food 2015, 8, 18–25. [Google Scholar] [CrossRef]
- Ogura, T.J.S.K.K. Operation Should be Automated and not so in Plant Factory for Leafy Vegetables. Shokubutsu Kankyo Kogaku 2011, 23, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Younis, S.M.; Omran, M.S.; Mohamed, T.H.; Amer, M.A. Development of a Leafy Crops Harvester. Misr. J. Agric. Eng. 2020, 29, 911–926. [Google Scholar] [CrossRef]
- Faran, M.; Nadeem, M.; Manful, C.F.; Galagedara, L.; Thomas, R.H.; Cheema, M. Agronomic Performance and Phytochemical Profile of Lettuce Grown in Anaerobic Dairy Digestate. Agronomy 2023, 13, 182. [Google Scholar] [CrossRef]
- Wang, J.; Du, D.-D.; Hu, J.-B.; Zhu, J.X. Vegetable mechanized harvesting technology and its development. Trans. CSAM 2014, 45, 81–87. [Google Scholar]
- Liu, J.-Z. Research Progress Analysis of Robotic Harvesting Technologies in Greenhouse. Trans. CSAM 2017, 48, 1–18. [Google Scholar]
- Yuan, J. Research Progress Analysis of Robotics Selective Harvesting Technologies. Trans. CSAM 2020, 51, 1–17. [Google Scholar]
- Liu, N.-H.; Jiang, X.-P.; Cheng, J.-F.; Li, H.-L.; Li, W.; Xue, K.-P.; Hou, L.; Xiong, Z. Current situation of foreign organic greenhouse horticulture and its inspiration for sustainable development of Chinese protected agriculture. Trans. CSAM 2018, 34, 1–9. [Google Scholar]
- Qi, F.; Wei, X.-M.; Zhang, Y.-F. Development status and future research emphase on greenhouse horticultural equipment and its relative technology in China. Trans. CSAE 2017, 33, 1–9. [Google Scholar]
- Goulart, R.; Jarvis, D.; Walsh, K.B. Evaluation of End Effectors for Robotic Harvesting of Mango Fruit. Sustainability 2023, 15, 6769. [Google Scholar] [CrossRef]
- Wang, M.; Yan, B.; Zhang, S.; Fan, P.; Zeng, P.; Shi, S.; Yang, F. Development of a Novel Biomimetic Mechanical Hand Based on Physical Characteristics of Apples. Agriculture 2022, 12, 1871. [Google Scholar] [CrossRef]
- Liu, T.; Liu, W.; Zeng, T.; Cheng, Y.; Zheng, Y.; Qiu, J. A Multi-Flexible-Fingered Roller Pineapple Harvesting Mechanism. Agriculture 2022, 12, 1175. [Google Scholar] [CrossRef]
- Wang, T.-C.; Du, W.-W.; Zeng, L.-S.; Su, L.; Zhao, Y.-M.; Gu, F.; Liu, L.; Chi, Q. Design and Testing of an End-Effector for Tomato Picking. Agronomy 2023, 13, 947. [Google Scholar] [CrossRef]
- Chiu, Y.C.; Yang, P.-Y.; Chen, S.-M. Development of the End-Effector of a Picking Robot for Greenhouse-Grown Tomatoes. Appl. Eng. Agric. 2013, 29, 1001–1009. [Google Scholar]
- Jia, J.-M.; Ye, Y.-Z.; Cheng, P.-L.; Hu, R.-Z.; Wu, C.-Y. Design and Parameter Optimization of Soft Pneumatic Gripper for Slender Fruits and Vegetables Picking. Trans. CSAM 2021, 52, 26–34. [Google Scholar]
- Liu, X.-M.; Tian, D.-B.; Song, M.-Z.; Geng, D.-X.; Zhao, Y.-W. Design and Experiment on Pneumatic Flexible Gripper for Picking Globose Fruit. Trans. CSAM 2021, 52, 30–43. [Google Scholar]
- Zhang, T.; Li, Y.; Song, S.-M.; Pang, Y.-L.; Shao, W.-X.; Tang, X.-L. Design and Experiment of Tumorous Stem Mustard Harvester Based on Flexible Gripping. Trans. CSAM 2020, 51, 162–169. [Google Scholar]
- Gao, G.-H.; Wang, K.; Yuan, Y.-W.; Liu, J.-F.; Wang, T.-B.; Sun, X.-N. Mechanical characteristic analysis of drawing and cutting process for greenhouse vegetable harvester based on energy balance theory. Trans. CSAE 2017, 33, 58–64. [Google Scholar]
- Ma, Y.-D.; Xu, C.; Cui, Y.-J.; Fu, L.-S.; Liu, H.-Z.; Yang, C. Design and Test of Harvester for Whole Hydroponic Lettuce with Low Damage. Trans. CSAM 2019, 50, 162–169. [Google Scholar]
- Cui, Y.-J.; Wang, W.-Q.; Wang, M.-H.; Ma, Y.-D.; Fu, L.-S. Effects of cutter parameters on shearing stress for lettuce harvesting using a specially developed fixture. Int. J. Agr. Biol. Eng. 2021, 14, 152–158. [Google Scholar] [CrossRef]
- Ma, Y.-D.; Hu, P.-Z.; Jin, X.; Li, X.-P.; Zhang, C.; Zhang, Y. Design and Experiment of Low Damage Flexible Harvesting Device for Hydroponic Lettuce. Trans. CSAM 2022, 53, 175–183. [Google Scholar]
- Wang, W.-Q.; Ma, Y.-D.; Fu, L.-S.; Cui, Y.-J.; Majeed, Y. Physical and mechanical properties of hydroponic lettuce for automatic harvesting. Inf. Process. Agric. 2021, 8, 550–559. [Google Scholar] [CrossRef]
Stage | Finger | Maximum Force (N) | Mean Force (N) | Standard Deviation (N) | Coefficient of Variation (%) |
---|---|---|---|---|---|
1 | 1 | 0.06 | 0.01 | 0.007 | 70.0 |
2 | 0.04 | 0.02 | 0.007 | 35.0 | |
3 | 0.05 | 0.02 | 0.007 | 35.0 | |
4 | 0.05 | 0.02 | 0.009 | 45.0 | |
2 | 1 | 1.72 | 1.54 | 0.539 | 43.9 |
2 | 2.45 | 2.08 | 0.631 | 41.4 | |
3 | 1.82 | 1.53 | 0.532 | 55.2 | |
4 | 2.37 | 2.10 | 0.539 | 39.6 | |
3 | 1 | 2.15 | 2.12 | 0.107 | 50.4 |
2 | 3.32 | 3.11 | 0.129 | 41.4 | |
3 | 2.47 | 2.28 | 0.136 | 59.6 | |
4 | 2.79 | 2.73 | 0.083 | 30.4 | |
4 | 1 | 2.23 | 1.05 | 0.931 | 88.6 |
2 | 3.12 | 1.62 | 1.109 | 67.9 | |
3 | 2.32 | 1.06 | 0.880 | 83.0 | |
4 | 2.74 | 1.60 | 0.926 | 57.8 |
Stage | Time (s) | P1 (mm/s2) | Direction | P2 (mm/s2) | Direction |
---|---|---|---|---|---|
1 | 0–0.75 | 69 | y− | 69 | y− |
0.75–2 | 60 | y+ | 60 | y+ | |
2 | 2–2.25 | 410 | x− | 445 | x+ |
2.25–2.75 | 215 | x+ | 220 | x− | |
2.75–4.5 | 0 | - | 0 | - | |
3 | 4.5–5.0 | 292 | y+ | 310 | y+ |
5.0–5.75 | 0 | - | 0 | - | |
5.75–6.25 | 276 | y− | 289 | y− | |
4 | 6.25–6.5 | 215 | x+ | 220 | x− |
6.5–7 | 106 | x− | 112 | x+ |
Finger | 1 | 2 | 3 | 4 | Standard Deviation (N) | Coefficient of Variation (%) | |
---|---|---|---|---|---|---|---|
Grabbing Type | |||||||
Mean force of Type A | 2.16 N | 2.23 N | 2.25 N | 2.23 N | 0.042 N | 1.9% | |
Mean force of Type B | 1.67 N | 2.12 N | 2.30 N | 2.32 N | 0.302 N | 14.4% | |
Mean force of Type C | 1.79 N | 2.24 N | 1.83 N | 2.33 N | 0.278 N | 13.6% | |
Standard deviation | 0.26 N | 0.07 N | 0.26 N | 0.06 N | / | / | |
Coefficient of variation | 13.6% | 3% | 12.1% | 2.4% | / | / |
Grabbing Type | A | B | C | |
---|---|---|---|---|
Leaves Injury Area (mm2) | ||||
1 | 284 | 195 | 141 | |
2 | 255 | 219 | 104 | |
3 | 260 | 187 | 114 | |
4 | 292 | 196 | 125 | |
5 | 296 | 199 | 115 | |
6 | 282 | 229 | 137 | |
7 | 250 | 184 | 135 | |
8 | 287 | 224 | 117 | |
9 | 269 | 214 | 102 | |
10 | 280 | 221 | 113 | |
Average value (mm2) | 275.5 | 206.8 | 120.3 | |
Standard deviation (mm2) | 16.0 | 16.4 | 13.7 | |
Coefficient of variation (%) | 5.8 | 7.9 | 11.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Hu, P.; Li, X.; Jin, X.; Wang, H.; Zhang, C. Effects of Harvesting Grabbing Type on Grabbing Force and Leaf Injury of Lettuce. Sensors 2023, 23, 6047. https://doi.org/10.3390/s23136047
Ma Y, Hu P, Li X, Jin X, Wang H, Zhang C. Effects of Harvesting Grabbing Type on Grabbing Force and Leaf Injury of Lettuce. Sensors. 2023; 23(13):6047. https://doi.org/10.3390/s23136047
Chicago/Turabian StyleMa, Yidong, Pengzhan Hu, Xinping Li, Xin Jin, Huankun Wang, and Chao Zhang. 2023. "Effects of Harvesting Grabbing Type on Grabbing Force and Leaf Injury of Lettuce" Sensors 23, no. 13: 6047. https://doi.org/10.3390/s23136047