Challenges and Limitation Analysis of an IoT-Dependent System for Deployment in Smart Healthcare Using Communication Standards Features
Abstract
:1. Introduction
2. IoT Challenges in Health Care
- Information that is transferred from sensors to control devices and forwarded to invigilator centers affects the performance of data due to external noise. Architecture with improved construction can help to deliver data without disturbing the original pattern. A noise-supporting approach can also be adopted to optimize the strength of the data signal;
- Various survival tracking techniques using ECG involve analysis of the acquired signal in a governed manner, which increases costs and results in error in the identification of the correct signal. Applying a machine learning approach for signal inspection can help to enhance performance and reduce costs;
- As the quantity of sensors increases due to their widespread application and attached devices require greater energy for processing, chances of energy absorption and power leakage are increased. Therefore, an optimized methodology is required to minimize the utilization of energy;
- Medical professionals require large amounts of data for clinical practice; the management of such data is quite challenging, and such issues should be efficiently addressed to minimize data loss;
- Real-time communication is difficult in laboratories or clinics in which medical teams require immediate information from cardiologists, diabetologists, etc.;
- The provision of in- and out-patient monitoring with available resources and facilities associated with different hospital is another challenge;
- In order to provide adequate health care for every person, the availability of e-healthcare facilities should be increased.
3. Related Work
4. Internet of Things and Health Care
5. Long–Short-Range Communication
5.1. Long-Range Commmunication
5.1.1. Sigfox
5.1.2. LoRaWAN and LoRa
5.1.3. Narrowband IoT
5.2. Short-Range Communication
5.2.1. Low-Energy-Based Bluetooth
5.2.2. Zigbee
6. IoT Security
7. Analysis and Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khurma, R.A.; Albashish, D.; Braik, M.; Alzaqebah, A.; Qasem, A.; Adwan, O. An augmented Snake Optimizer for diseases and COVID-19 diagnosis. Biomed. Signal Process. Control. 2023, 84, 104718. [Google Scholar] [CrossRef] [PubMed]
- Mohit, K.; Kumar, A.; Verma, S.; Bhattacharya, P.; Ghimire, D.; Kim, S.-H.; Hosen, A.S. Healthcare Internet of Things (H-IoT): Current Trends, Future Prospects, Applications, Challenges, and Security Issues. Electronics 2023, 12, 2050. [Google Scholar]
- Perrier, E. Positive Disruption: Healthcare, Ageing & Participation in the Age of Technology; The McKell Institute: Sydney, NSW, Australia, 2015. [Google Scholar]
- Gope, P.; Hwang, T. BSN-Care: A Secure IoT Based Modern Healthcare System Using Body Sensor Network. IEEE Sens. J. 2016, 16, 1368–1376. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, M.; Mahapatra, R.P.; Bhattacharya, P.; Le, T.-T.; Verma, S.; Kavita; Mohiuddin, K. Flamingo-Optimization-Based Deep Convolutional Neural Network for IoT-Based Arrhythmia Classification. Sensors 2023, 23, 4353. [Google Scholar] [CrossRef]
- Chang, S.-H.; Chiang, R.-D.; Wu, S.-J.; Chang, W.-T. A Context-Aware, Interactive M-Health System for Diabetics. IT Prof. 2016, 18, 14–22. [Google Scholar] [CrossRef]
- Kumar, M.; Mukherjee, P.; Verma, S.; Kavita; Kaur, M.; Singh, S.; Kobielnik, M.; Woźniak, M.; Shafi, J.; Ijaz, M.F. BBNSF: Blockchain-Based Novel Secure Framework Using RP2-RSA and ASR-ANN Technique for IoT Enabled Healthcare Systems. Sensors 2022, 22, 9448. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, D.; Akhtar, M.A.K. A modified GA-based load balanced clustering algorithm for WSN: MGALBC. Int. J. Embed. Real-Time Commun. Syst. 2021, 12, 44–63. [Google Scholar] [CrossRef]
- Sarkar, S.; Misra, S. From Micro to Nano: The Evolution of Wireless Sensor-Based Health Care. IEEE Pulse 2016, 7, 21–25. [Google Scholar] [CrossRef]
- Yin, Y.; Zeng, Y.; Chen, X.; Fan, F. The internet of things in healthcare: An overview. J. Ind. Inf. Integr. 2016, 1, 3–13. [Google Scholar] [CrossRef]
- Islam, S.M.R.; Kwak, D.; Kabir, H.; Hossain, M.; Kwak, K.-S. The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Dimitrov, D.V. Medical Internet of Things and Big Data in Healthcare. Healthc. Inform. Res. 2016, 22, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Pratap, A.; Kumar, A.; Kumar, M. Analyzing the Need of Edge Computing for Internet of Things (IoT). In Proceedings of the Second International Conference on Computing, Communications, and Cyber-Security (IC4S 2020), Delhi, India, 3–4 October 2020; pp. 203–212. [Google Scholar]
- Wu, T.; Wu, F.; Redoute, J.M.; Yuce, M.R. An autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access 2017, 5, 11413–11422. [Google Scholar] [CrossRef]
- Chen, X.; Ma, M.; Liu, A. Dynamic power management and adaptive packet size selection for IoT in e-Healthcare. Comput. Electr. 2018, 65, 357–375. [Google Scholar] [CrossRef]
- Subramaniyaswamy, V.; Manogaran, G.; Logesh, R.; Vijayakumar, V.; Chilamkurti, N.; Malathi, D.; Senthilselvan, N. An ontology-driven personalized food recommendation in IoT-based healthcare system. J. Supercomput. 2018, 75, 3184–3216. [Google Scholar] [CrossRef]
- Verma, P.; Sood, S.K.; Kalra, S. Cloud-centric IoT based student healthcare monitoring framework. J. Ambient Intell. Humaniz. Comput. 2018, 9, 1293–1309. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Deng, R.H. Lightweight break-glass access control system for healthcare Internet-of-Things. IEEE Trans. Ind. Inf. 2018, 14, 3610–3617. [Google Scholar] [CrossRef]
- Gupta, V.; Singh Gill, H.; Singh, P.; Kaur, R. An energy efficient fog-cloud based architecture for healthcare. J. Stat. Manag. Syst. 2018, 21, 529–537. [Google Scholar] [CrossRef]
- Elhoseny, M.; Ramírez-González, G.; Abu-Elnasr, O.M.; Shawkat, S.A.; Arunkumar, N.; Farouk, A. Secure medical data transmission model for IoT-based healthcare systems. IEEE Access 2018, 6, 20596–20608. [Google Scholar] [CrossRef]
- Ould-Yahia, Y.; Banerjee, S.; Bouzefrane, S.; Boucheneb, H. Exploring formal strategy framework for the security in IoT towards e-health context using computational intelligence. In Internet of Things and Big Data Technologies for Next Generation Healthcare; Bhatt, C., Dey, N., Ashour, A.S., Eds.; Springer: Cham, Germany, 2017; pp. 63–90. [Google Scholar]
- Ramisetty, S.; Kavita; Varma, S. The Amalgamative Sharp Wireless Sensor Networks Routing and with Enhanced Machine Learning. J. Comput. Theor. Nanosci. 2019, 16, 3766–3769. [Google Scholar] [CrossRef]
- Kumar, S.; Shanker, R.; Verma, S. Context aware dynamic permission model: A retrospect of privacy and security in Android system. In Proceedings of the 2018 International Conference on Intelligent Circuits and Systems (ICICS), Phagwara, India, 19–20 April 2018; pp. 324–329. [Google Scholar]
- Ghosh, G.; Kavita; Verma, S.; Jhanjhi, N.Z.; Talib, M.N. Secure Surveillance System Using Chaotic Image Encryption Technique. IOP Conf. Ser. Mater. Sci. Eng. 2020, 993, 012062. [Google Scholar] [CrossRef]
- Tian, X.; Huang, Y.; Verma, S.; Jin, M.; Ghosh, U.; Rabie, K.M.; ThuanDo, D. Power allocation scheme for maximizing spectral efficiency and energy efficiency tradeoff for uplink NOMA systems in B5G/6G. Phys. Commun. 2020, 43, 101227. [Google Scholar] [CrossRef]
- Ghosh, G.; Kavita; Anand, D.; Verma, S.; Rawat, D.B.; Shafi, J.; Marszałek, Z.; Woźniak, M. Secure Surveillance Systems Using Partial-Regeneration-Based Non-Dominated Optimization and 5D-Chaotic Map. Symmetry 2021, 13, 1447. [Google Scholar] [CrossRef]
- Dash, S.; Verma, S.; Kavita; Jhanjhi, N.; Masud, M.; Baz, M. Curvelet Transform Based on Edge Preserving Filter for Retinal Blood Vessel Segmentation. CMC Comput. Mater. Contin. 2022, 71, 2459–2476. [Google Scholar] [CrossRef]
- Dogra, V.; Verma, S.; Kavita; Chatterjee, P.; Shafi, J.; Choi, J.; Ijaz, M.F. A Complete Process of Text Classification System Using State-of-the-Art NLP Models. Comput. Intell. Neurosci. 2022, 2022, 1883698. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Wenbi, R.; da Silva, A.L.; Nadher, M.; Mudhish, M. Health and emergency-care platform for the elderly and disabled people in the Smart City. J. Syst Softw. 2015, 110, 253–263. [Google Scholar] [CrossRef]
- Kumar, M.; Verma, S.; Kumar, A.; Ijaz, M.F.; Rawat, D.B. ANAF-IoMT: A Novel Architectural Framework for IoMT-Enabled Smart Healthcare System by Enhancing Security Based on RECC-VC. IEEE Trans. Ind. Inform. 2022, 18, 8936–8943. [Google Scholar] [CrossRef]
- Zenko, J.; Kos, M.; Kramberger, I. Pulse rate variability and blood oxidation content identification using miniature wearable wrist device. In Proceedings of the 2016 International Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava, Slovakia, 23–25 May 2016. [Google Scholar]
- Lee, H.; Ko, H.; Jeong, C.; Lee, J. Wearable Photoplethysmographic Sensor Based on Different LED Light Intensities. IEEE Sens. J. 2017, 17, 587–588. [Google Scholar] [CrossRef]
- Shu, Y.; Li, C.; Wang, Z.; Mi, W.; Li, Y.; Ren, T.L. A pressure sensing system for heart rate monitoring with polymer-based pressure sensors and an anti-interference post processing circuit. Sensors 2015, 15, 3224–3235. [Google Scholar] [CrossRef]
- An, Y.J.; Kim, B.H.; Yun, G.H.; Kim, S.W.; Hong, S.B.; Yook, J.G. Flexible Non-Constrained RF Wrist Pulse Detection Sensor Based on Array Resonators. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 300–308. [Google Scholar] [CrossRef]
- Milici, S.; Lorenzo, J.; Lazaro, A.; Villarino, R.; Girbau, D. Wireless Breathing Sensor Based on Wearable Modulated Frequency Selective Surface. IEEE Sens. J. 2016, 17, 1285–1292. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Z.; Elvin, C.S.M.; Janice, L.H.Y.; Ng, S.H.; Teo, J.T.; Wu, R. Textile Fiber Optic Microbend Sensor Used for Heartbeat and Respiration Monitoring. IEEE Sens. J. 2015, 15, 757–761. [Google Scholar] [CrossRef]
- Min, S.D.; Yun, Y.; Shin, H. Simplified Structural Textile Respiration Sensor Based on Capacitive Pressure Sensing Method. IEEE Sens. J. 2014, 14, 3245–3251. [Google Scholar]
- Mahbub, I.; Pullano, S.A.; Wang, H.; Islam, S.K.; Fiorillo, A.S.; To, G.; Mahfouz, M.R. A Low Power Wireless Piezoelectric Sensor-Based Respiration Monitoring System Realized in CMOS Process. IEEE Sens. J. 2017, 17, 1858–1864. [Google Scholar] [CrossRef]
- Atalay, O.; Kennon, W.R.; Demirok, E. Weft Knitted Strain Sensor for Monitoring Respiratory Rate and Its Electro-Mechanical Modeling. IEEE Sens. J. 2015, 15, 110–122. [Google Scholar] [CrossRef]
- Aqueveque, P.; Gutierrez, C.; Saavedra, F.; Pino, E.J.; Morales, A.; Wiechmann, E. Monitoring Physiological Variables of Mining Workers at High Altitude. IEEE Trans. Ind. Appl. 2017, 99, 1–20. [Google Scholar] [CrossRef]
- Nakamura, T.; Yokota, T.; Terakawa, Y.; Reeder, J.; Voit, W.; Someya, T.; Sekino, M. Development of flexible and wide-range polymer-based temperature sensor for human bodies. In Proceedings of the 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Las Vegas, NV, USA, 24–27 February 2016; pp. 485–488. [Google Scholar]
- Upadhyay, S.; Kumar, M.; Kumar, A.; Ghafoor, K.Z.; Manoharan, S. SmHeSol (IoT-BC): Smart healthcare solution for future development using speech feature extraction integration approach with IoT and blockchain. J. Sens. 2022, 2022, 3862860. [Google Scholar] [CrossRef]
- Thomas, S.S.; Nathan, V.; Zong, C.; Soundarapandian, K.; Shi, X.; Jafari, R. BioWatch: A Noninvasive Wrist Based Blood Pressure Monitor That Incorporates Training Techniques for Posture and Subject Variability. IEEE J. Biomed. Health Inform. 2017, 20, 1291–1300. [Google Scholar] [CrossRef]
- Lin, H.; Xu, W.; Guan, N.; Ji, D.; Wei, Y.; Yi, W. Noninvasive and Continuous Blood Pressure Monitoring Using Wearable Body Sensor Networks. IEEE Intell. Syst. 2015, 30, 38–48. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Yan, B.P.; Zhang, Y.T.; Poon, C.C.Y. An Armband Wearable Device for Overnight and Cuff Less Blood Pressure Measurement. IEEE Trans. Biomed. Eng. 2014, 61, 2179–2186. [Google Scholar] [CrossRef]
- Griggs, D.; Sharma, M.; Naghibi, A.; Wallin, C.; Ho, V.; Barbosa, K.; Ghirmai, T.; Cao, H.; Krishnan, S.K. Design and develop-ment of continuous cuff-less blood pressure monitoring devices. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016. [Google Scholar]
- Zhang, Y.; Berthelot, M.; Lo, B. Wireless wearable photoplethysmography sensors for continuous blood pressure monitoring. In Proceedings of the 2016 IEEE Wireless Health (WH), Bethesda, MD, USA, 25–27 October 2016. [Google Scholar]
- Wannenburg, J.; Malekian, R. Body Sensor Network for Mobile Health Monitoring, a Diagnosis and Anticipating System. IEEE Sens. J. 2015, 15, 6839–6852. [Google Scholar] [CrossRef]
- Gubbi, S.V.; Amrutur, B. Adaptive Pulse Width Control and Sampling for Low Power Pulse Oximetry. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Venema, B.; Gehring, H.; Michelsen, I.; Blanik, N.; Blazek, V.; Leonhardt, S. Robustness, Specificity, and Reliability of an In-Ear Pulse Oximetric Sensor in Surgical Patients. IEEE J. Biomed. Health Inform. 2014, 18, 1178–1185. [Google Scholar] [CrossRef] [PubMed]
- Kiruthika, K.; Gayathri, S.; Hemalatha, R.; Menaga, P. Design and Development of Mobile Healthcare Application for “Ayurvedic” Based Clinical Documents. J. Cogn. Hum. Comput. Interact. 2021, 1, 18–27. [Google Scholar] [CrossRef]
- Rachim, V.P.; Chung, W.Y. Wearable Noncontact Armband for Mobile ECG Monitoring System. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lee, B.L.; Chung, W.Y. Smartwatch Based Wearable EEG System for Driver Drowsiness Detection. IEEE Sens. J. 2015, 15, 17169–17180. [Google Scholar] [CrossRef]
- Atassi, R.; Alhosban, F. Fusion Optimization and Classification Model for Blockchain Assisted Healthcare Environment. Fusion Pract. Appl. 2022, 9, 62–73. [Google Scholar] [CrossRef]
- Wannenburg, J.; Malekian, R. Physical Activity Recognition from Smartphone Accelerometer Data for User Context Awareness Sensing. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 3142–3149. [Google Scholar] [CrossRef]
- Vallabh, P.; Malekian, R.; Ye, N.; Bogatinoska, D.C. Fall detection using machine learning algorithms. In Proceedings of the 2016 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 22–24 September 2016. [Google Scholar]
- Ozcan, K.; Velipasalar, S. Wearable Camera- and Accelerometer-Based Fall Detection on Portable Devices. IEEE Embed. Ded Syst. Lett. 2016, 8, 6–9. [Google Scholar] [CrossRef]
- Pierleoni, P.; Belli, A.; Palma, L.; Pellegrini, M.; Pernini, L.; Valenti, S. A High Reliability Wearable Device for Elderly Fall Detection. IEEE Sens. J. 2015, 15, 4544–4553. [Google Scholar] [CrossRef]
- Pierleoni, P.; Belli, A.; Maurizi, L.; Palma, L.; Pernini, L.; Paniccia, M.; Valenti, S. A Wearable Fall Detector for Elderly People Based on AHRS and Barometric Sensor. IEEE Sens. J. 2016, 16, 6733–6744. [Google Scholar] [CrossRef]
- Gupta, R.; Verma, S.; Kavita. Test driven software development technique for software engineering. Int. J. Res. Eng. It Soc. Sci. 2012, 2, 81–91. [Google Scholar]
- Wadhwa, S.; Rani, S.; Verma, S.; Shafi, J.; Wozniak, M. Energy Efficient Consensus Approach of Blockchain for IoT Networks with Edge Computing. Sensors 2022, 22, 3733. [Google Scholar] [CrossRef]
- Sharma, S.; Gosain, A.; Jain, S. Review of the Oversampling Techniques in Class Imbalance Problem. In Proceedings of the International Conference on Innovative Computing and Communications, Delhi, India, 19–20 February 2022. [Google Scholar]
- Kaur, K.; Verma, S.; Bansal, A. IOT Big Data Analytics in Healthcare: Benefits and Challenges. In Proceedings of the 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 7–9 October 2021; pp. 176–181. [Google Scholar] [CrossRef]
- Ravi, N.; Verma, S.; Jhanjhi, N.Z.; Talib, M.N. Securing VANET Using Blockchain Technology. J. Phys. Conf. Ser. 2021, 1979, 012035. [Google Scholar] [CrossRef]
- Singh, D.; Verma, S.; Singla, J. A Neuro-fuzzy based Medical Intelligent System for the Diagnosis of Hepatitis B. In Proceedings of the 2021 2nd International Conference on Computation, Automation and Knowledge Management (ICCAKM), Dubai, United Arab Emirates, 19–21 January 2021; pp. 107–111. [Google Scholar] [CrossRef]
- Singh, D.; Verma, S.; Singla, J. A Comprehensive Review of Intelligent Medical Diagnostic Systems. In Proceedings of the 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), Tirunelveli, India, 15–17 June 2020; pp. 977–981. [Google Scholar] [CrossRef]
- Sood, M.; Verma, S.; Panchal, V.K.; Kavita. Analysis of Computational Intelligence Techniques for Path Planning. In New Trends in Computational Vision and Bio-Inspired Computing, Proceedings of the International Conference On Computational Vision and Bio Inspired Computing (ICCVBIC 2018); Smys, S., Iliyasu, A.M., Bestak, R., Shi, F., Eds.; Springer: Cham, Germany, 2018. [Google Scholar] [CrossRef]
- Upadhyay, S.; Kumar, S.K.; Upadhyay, A. Speaker Identification and Verification using Different Model for Text Dependent. Int. J. Appl. Eng. Res. 2017, 12, 1633–1638. [Google Scholar]
- Kumar, M.; Mukherjee, P.; Verma, S.; Shafi, J.; Wozniak, M.; Ijaz, M.F. A smart privacy preserving framework for industrial IoT using hybrid meta-heuristic algorithm. Sci. Rep. 2023, 13, 5372. [Google Scholar] [CrossRef]
- Mahmoud, M. Ismail, Interval Valued Neutrosophic Sets and Multi-Criteria Decision Making for Sustainable Mobile Healthcare Promotion. Financ. Technol. Innov. 2022, 1, 08–15. [Google Scholar] [CrossRef]
- University of New England. SMART Farm. 2017. Available online: www.une.edu.au/research/researchcentres-institutes/smart-far (accessed on 7 February 2023).
- Upadhyay, S.; Sharma, S.; Upadhyay, A. Analysis of Different Classifier Using Feature Extraction in Speaker Identification and Verification under Adverse Acoustic Condition for Different Scenario. Int. J. Innov. Eng. Technol. 2016, 6, 425–434. [Google Scholar]
- Abdelaziz, A.; Mahmoud, A.N. Clustered IoT Based Data Fusion model for Smart Healthcare Systems. J. Intell. Syst. Internet Things 2022, 6, 22–31. [Google Scholar] [CrossRef]
- WAVIoT. Comparison of LPWAN Technologies. 2016. Available online: http://dgmatics.com/technology/waviot-lpwan (accessed on 3 January 2023).
- VT Networks. Sigfox Network Overview for Technical Professionals. 2016. Available online: http://vtnetworks.ie/wpcontent/uploads/2016/12/Sigfox-Network-Ove (accessed on 3 January 2023).
- Thinxtra. Empowering Internet of Things in Australia, New Zealand and Hong Kong. 2017. Available online: https://www.thinxtra.com (accessed on 3 January 2023).
- Ratasuk, R.; Vejlgaard, B.; Mangalvedhe, N.; Ghosh, A. NB-IoT system for M2M communication. In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Doha, Qatar, 3–6 April 2016. [Google Scholar]
- Mangalvedhe, N.; Ratasuk, R.; Ghosh, A. NB-IoT deployment study for low power wide area cellular IoT. In Proceedings of the 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–8 September 2016. [Google Scholar]
- Huawei. NB-IoT (White Paper). 2017. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiKo8DCkJP_AhX5m_0HHfVdCQgQFnoECAsQAQ&url=https%3A%2F%2Fwww.huawei.com%2Fminisite%2F4-5g%2Fimg%2FNB-IOT.pdf&usg=AOvVaw0SxTgFHVOmCtD0E-zM9PY8 (accessed on 3 January 2023).
- Ratasuk, R.; Mangalvedhe, N.; Zhang, Y.; Robert, M.; Koskinen, J.P. Overview of narrowband IoT in LTE Rel-13. In Proceedings of the 2016 IEEE Conference on Standards for Communications and Networking (CSCN), Berlin, Germany, 31 October–2 November 2016. [Google Scholar]
- Zaher, M.; ElGhitany, N.E.-K. Blockchain Communication Platform Selection in IoT Healthcare Industry using MARCOS. Int. J. Wirel. Ad Hoc Commun. 2021, 2, 49–57. [Google Scholar] [CrossRef]
- Heer, M.S.; Chavhan, H.; Chumber, V.; Sharma, V. A Study of Internet of Medical Things (IoMT) Used in Pandemic COVID-19 For Healthcare Monitoring Services. J. Cybersecur. Inf. Manag. 2021, 5, 5–12. [Google Scholar] [CrossRef]
- Abualkishik, A.Z.; Alwan, A.A. Multi-Objective Chaotic Butterfly Optimization with Deep Neural Network based Sustainable Healthcare Management Systems. Am. J. Bus. Oper. Res. 2021, 4, 39–48. [Google Scholar] [CrossRef]
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of Things in the 5G Era: Enablers, Architecture, and Business Models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef]
- Gupta, R.; Verma, S.; Janjua, K. Custom Application Development in Cloud Environment: Using Salesforce. In Proceedings of the 2018 4th International Conference on Computing Sciences (ICCS), Jalandhar, India, 30–31 August 2018; pp. 23–27. [Google Scholar] [CrossRef]
- Upadhyay, S.; Kumar, M.; Kumar, A.; Kranti, R.; Mahommad, G.B.; Althubiti, S.A.; Alenezi, F.; Polat, K. Feature Extraction Approach for Speaker Verification to Support Healthcare System using Blockchain for Data Privacy. Comput. Math. Methods Med. 2022, 2022, 8717263. [Google Scholar] [CrossRef] [PubMed]
- Gandam, A.; Sidhu, J.S.; Verma, S.; Jhanjhi, N.Z.; Nayyar, A.; Abouhawwash, M.; Nam, Y. An efficient post-processing adaptive filtering technique to rectifying the flickering effects. PLoS ONE 2021, 16, e0250959. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Gandadotra, N. Upadhyay. Impact of Mobility on the Performance of Wireless Ad hoc Networks Scenario using Distance Vector Routing Protocol. Int. J. Comput. Appl. 2012, 57, 14–21. [Google Scholar]
- Ghosh, G.; Kavita; Verma, S.; Talib, M.N.; Shah, M.H. A Systematic Review on Image Encryption Techniques. Turk. J. Comput. Math. Educ. 2021, 12, 3055–3059. [Google Scholar]
- Kaur, M.; Singh, A.; Verma, S.; Kavita Jhanjhi, N.Z.; Talib, M.N. FANET: Efficient Routing in Flying Ad Hoc Networks (FANETs) Using Firefly Algorithm. In Intelligent Computing and Innovation on Data Science; Peng, S.L., Hsieh, S.Y., Gopalakrishnan, S., Duraisamy, B., Eds.; Lecture Notes in Networks and Systems; Springer: Singapore, 2021; Volume 248. [Google Scholar] [CrossRef]
- Srivastava, A.; Verma, S.; Jhanjhi, N.Z.; Talib, M.N.; Malhotra, A. Analysis of Quality of Service in VANET. IOP Conf. Ser. Mater. Sci. Eng. 2020, 993, 012061. [Google Scholar] [CrossRef]
- Abu Khurma, R.; Almomani, I.; Aljarah, I. IoT botnet detection using salp swarm and ant lion hybrid optimization model. Symmetry 2021, 13(8), 1377. [Google Scholar] [CrossRef]
- Alazab, M.; Khurma, R.A.; Awajan, A.; Camacho, D. A new intrusion detection system based on Moth–Flame Optimizer algorithm. Expert Syst. Appl. 2022, 210, 118439. [Google Scholar] [CrossRef]
- Sharma, S.; Verma, S.; Jyoti, K. A New Bat Algorithm with Distance Computation Capability and Its Applicability in Routing for WSN. In Soft Computing and Signal Processing; Wang, J., Reddy, G., Prasad, V., Reddy, V., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2019; Volume 898. [Google Scholar] [CrossRef]
- Singh, A.P.; Pradhan, N.R.; Luhach, A.K.; Agnihotri, S.; Jhanjhi, N.Z.; Verma, S.; Kavita; Ghosh, U.; Roy, D.S. A Novel Patient-Centric Architectural Framework for Blockchain-Enabled Healthcare Applications. IEEE Trans. Ind. Inform. 2021, 17, 5779–5789. [Google Scholar] [CrossRef]
- Kundu, N.; Rani, G.; Dhaka, V.S.; Gupta, K.; Nayak, S.C.; Verma, S.; Ijaz, M.F.; Woźniak, M. IoT and Interpretable Machine Learning Based Framework for Disease Prediction in Pearl Millet. Sensors 2021, 21, 5386. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Verma, S.; Kavita; Khan, M.S.; Wozniak, M.; Shafi, J.; Ijaz, M.F. A Hybrid Method to Enhance Thick and Thin Vessels for Blood Vessel Segmentation. Diagnostics 2021, 11, 2017. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, M.; Verma, S.; Kavita; Jhanjhi, N.Z.; Ghoniem, R.M. Vbswp-CeaH: Vigorous Buyer-Seller Watermarking Protocol without Trusted Certificate Authority for Copyright Protection in Cloud Environment through Additive Homomorphism. Symmetry 2022, 14, 2441. [Google Scholar] [CrossRef]
- Miller, R. LoRa Security—Building a Secure LoRa Solution (white paper). 2016. Available online: https://www.iot-now.com/2016/03/29/44886-mwr-infosecurity-issues-practical-advice-on-building-a-secure-lora-solution/ (accessed on 7 February 2023).
- GSMA. 3GPP Low Power Wide Area Technologies (White Paper). 2016. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjn_tvekZP_AhUDgP0HHaNqD_IQFnoECA8QAQ&url=https%3A%2F%2Fwww.gsma.com%2Fiot%2Fwp-content%2Fuploads%2F2016%2F10%2F3GPP-Low-Power-Wide-Area-Technologies-GSMA-White-Paper.pdf&usg=AOvVaw0bVEeaOZxz2zselstOqYV5 (accessed on 7 February 2023).
- Premarathne, U.; Abuadbba, A.; Alabdulatif, A.; Khalil, I.; Tari, Z.; Zomaya, A.; Buyya, R. Hybrid Cryptographic Access Con-trol for Cloud-Based EHR Systems. IEEE Cloud Comput. 2016, 3, 58–64. [Google Scholar] [CrossRef]
- Khedr, A.; Gulak, G. SecureMed: Secure Medical Computation using GPU-Accelerated Homomorphic Encryption Scheme. IEEE J. Biomed. Health Inform. 2017, 22, 597–606. [Google Scholar] [CrossRef]
- Arafat, M.Y.; Pan, S.; Bak, E. Distributed Energy Efficient Clustering and Routing for Wearable IoT Enabled Wireless Body Area Network. IEEE Access 2023, 11, 5047–5061. [Google Scholar] [CrossRef]
- Zeb, A.; Wakeel, S.; Rahman, T.; Khan, I.; Uddin, M.I.; Niazi, B. Energy Efficient Cluster Formation in IoT-Enabled Wirless Body Area Network. Comput. Intell. Neurosci. 2022, 2022, 2558590. [Google Scholar] [CrossRef]
- Londhe, A.; Rao, P.V.R.D.; Upadhyay, S.; Jain, R. Extracting Behavior Identification for Monitoring and Managing Speech Dependent Smart Mental Illness Healthcare System. Comput. Intell. Neurosci. 2022, 2022, 8579640. [Google Scholar] [CrossRef]
- Kaur, G.; Chank, P.; Bhattacharya, M. Energy-Efficient Intelligent Routing Scheme for IoT-Enabled WSNs. IEEE Int. Things 2021, 8, 11440–11449. [Google Scholar] [CrossRef]
- Saxena, M.; Banu, F.; Srivastava, A.; Thyagaraj, M.; Upadhyay, S. Comprehensive Analysis of Energy Efficient Secure Routing Protocol for Sensor Network. Mater. Today 2022, 62, 5003–5007. [Google Scholar]
- Hunkeler, U.; Truong, H.L.; Stanford-Clark, A. MQTT-S—A publish/subscribe protocol for wireless sensor networks. In Proceedings of the 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE’08), Bangalore, India, 6–10 January 2008. [Google Scholar]
- Raza, S.; Shafagh, H.; Hewage, K.; Hummen, R.; Voigt, T. Lithe: Lightweight secure coap for the internet of things. IEEE Sens. J. 2013, 13, 3711–3720. [Google Scholar] [CrossRef]
Parameters | IoT (NB) | Big Fox | LoRa WAN |
---|---|---|---|
Operating Band | In-band LTE mode, guard-band LTE | 915 MHz for US and 868 MHz for Europe | 915 MHz for US and 868 MHz for Europe |
License required | Yes | No | No |
Approx. range | 16 km | 10 km | 7 km |
Rate of data | 250 kbps | 120 kbps | Up to 6 kbps |
Capacity of network | 54,000 nodes | 55,000 nodes | 42,000 nodes |
Relevance for health care | Good | Poor | Average |
Direction of communication | Downlink and uplink | Request for downlink and uplink facility is unlimited | Downlink and uplink |
Safety attributes | Security enabled with S3 (3G PP), which includes authentication, recognition and confidentiality with data integrity | A private key is used with a limited of 142 messages with scrambling and encryption enabled | Each node is assigned a unique key in the network, which is known to the network and supports data encryption |
Parameter | Zigbee | Bluetooth |
---|---|---|
Operating band | 2.5 GHz | 2400–2484 MHz |
Topography | Mesh topology | Star topology |
Radius | 10–100 m | 30 feet |
Rate of data | 250 kbps | 24 Mbps |
Safety attribute | A network with an encryption key (128-AES) and a link key is available to provide additional security in the application layer | Pairing is implemented in the secure mode to exchange information and provide two-key authentication and protection |
Relevance for healthcare | Average | Better |
Parameters | Values |
---|---|
Distance (interarea) | 1600 m |
Frequency | 800 MHz |
Cell design | Grid (hexagonal) |
Transmission power | 28 dB (per 200 KHz) |
Model for path loss | I = 110.8 for 800 MHz |
User tools (noise figure) | 2 dB |
Base station (noise figure) | 4 dB |
Cell–area correlation | 0.6 |
Cell–location correlation | 1.0 |
Standard deviation | 6 dB |
Spectral volume | (−164 dBm/Hz) |
Antenna gain | 16 dBi |
Coupling Loss | Renewed |
---|---|
Under 140 dB | One (01) |
141–143 dB | Two (02) |
144–146 dB | Four (04) |
147–149 dB | Eight (08) |
150–152 dB | Sixteen (16) |
153–155 dB | Thirty-two (32) |
156–158 dB | Sixty-four (64) |
159–161 dB | One hundred twenty-eight (128) |
Above 162 dB | 256 used for downlink and 128 for uplink |
Types of Sensor | Data Coverage | Size of Information | Period |
---|---|---|---|
Motion | --------- | Two bytes | Two hours |
Hear Beat | 0–60 beats/min | One byte | Four to five minutes |
Blood Pressure | 20–350 mm Hg | Two bytes | Half an hour |
Temperature (Body) | 23–45 °C | One byte | Four to five minutes |
Rate (Respiratory) | 3–50 breaths per min | One byte | Four to five minutes |
pH (Blood) | 6.6–7.6 units | One byte | Four to five minutes |
Packet Size | τ ± ρ (LAP) | τ ± ρ (MQTPP) |
---|---|---|
30 | 2.428 ± 0.001 | 0.091 ± 0.004 |
60 | 5.332 ± 0.002 | 0.764 ± 0.006 |
600 | 6.712 ± 0.006 | 2.128 ± 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upadhyay, S.; Kumar, M.; Upadhyay, A.; Verma, S.; Kavita; Kaur, M.; Khurma, R.A.; Castillo, P.A. Challenges and Limitation Analysis of an IoT-Dependent System for Deployment in Smart Healthcare Using Communication Standards Features. Sensors 2023, 23, 5155. https://doi.org/10.3390/s23115155
Upadhyay S, Kumar M, Upadhyay A, Verma S, Kavita, Kaur M, Khurma RA, Castillo PA. Challenges and Limitation Analysis of an IoT-Dependent System for Deployment in Smart Healthcare Using Communication Standards Features. Sensors. 2023; 23(11):5155. https://doi.org/10.3390/s23115155
Chicago/Turabian StyleUpadhyay, Shrikant, Mohit Kumar, Aditi Upadhyay, Sahil Verma, Kavita, Maninder Kaur, Ruba Abu Khurma, and Pedro A. Castillo. 2023. "Challenges and Limitation Analysis of an IoT-Dependent System for Deployment in Smart Healthcare Using Communication Standards Features" Sensors 23, no. 11: 5155. https://doi.org/10.3390/s23115155
APA StyleUpadhyay, S., Kumar, M., Upadhyay, A., Verma, S., Kavita, Kaur, M., Khurma, R. A., & Castillo, P. A. (2023). Challenges and Limitation Analysis of an IoT-Dependent System for Deployment in Smart Healthcare Using Communication Standards Features. Sensors, 23(11), 5155. https://doi.org/10.3390/s23115155