A Lightweight Feature Distillation and Enhancement Network for Super-Resolution Remote Sensing Images
Abstract
:1. Introduction
- We propose a shallow pixel attention block (SRAB), which introduces the pixel attention mechanism, which can make the network pay attention to repair the missing texture details with very few parameters.
- We propose the SFM, which fuses the retained feature after stepwise distillation to make full use of the reserved features and promote information flow, so that it can make the feature expression more comprehensive.
- We propose a bilateral feature-enhancement module (BFEM), which extracts contextual information and enhances the resulting feature separately by means of a bilateral band.
2. Proposed Method
2.1. Network Architecture
2.2. The Proposed FDEB
2.2.1. Feature-Distillation Part
2.2.2. Bilateral Feature Enhancement Module
2.3. Gaussian Context Transformer
3. Results
3.1. Experimental Settings
3.1.1. Dataset
3.1.2. Degradation Method
3.1.3. Training Details
3.1.4. Evaluation Index
3.2. Comparison of Visualization Results
3.2.1. Results on Remote Sensing Images
3.2.2. Results on Natural Images
4. Discussion
4.1. Comparison of SRB and SRAB
4.2. Comparison of ESA and BFEM
4.3. Analysis of SFM
4.4. Analysis of Model Complexity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Wei, W.; Zhang, L. GSDet: Object Detection in Aerial Images Based on Scale Reasoning. IEEE Trans. Image Process. 2021, 30, 4599–4609. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, W.; Zhang, Y.; Tao, C.; Xiao, R.; Tan, Y. Accurate Cloud Detection in High-Resolution Remote Sensing Imagery by Weakly Supervised Deep Learning. Remote Sens. Environ. 2020, 250, 112045. [Google Scholar] [CrossRef]
- Zhu, Q.; Fan, X.; Zhong, Y.; Guan, Q.; Zhang, L.; Li, D. Super Resolution Generative Adversarial Network Based Image Augmentation for Scene Classification of Remote Sensing Images. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 573–576. [Google Scholar] [CrossRef]
- Wang, L.; Guo, S.; Huang, W.; Xiong, Y.; Qiao, Y. Knowledge Guided Disambiguation for Large-Scale Scene Classification with Multi-Resolution CNNs. IEEE Trans. Image Process. 2017, 26, 2055–2068. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Lv, Q. Image Sharpening Algorithm Based on a Variety of Interpolation Methods. In Proceedings of the 2012 International Conference on Image Analysis and Signal Processing, Huangzhou, China, 9–11 November 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, X.; Tao, D.; Li, X. Single Image Super-Resolution with Non-Local Means and Steering Kernel Regression. IEEE Trans. Image Process. 2012, 21, 4544–4556. [Google Scholar] [CrossRef]
- Timofte, R.; De, V.; Gool, L.V. Anchored Neighborhood Regression for Fast Example-Based Super-Resolution. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 1920–1927. [Google Scholar] [CrossRef]
- Thurnhofer, S.; Mitra, S.K. Edge-enhanced image zooming. Opt. Eng. 1996, 35, 1862–1870. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the Super-Resolution Convolutional Neural Network. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 391–407. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 294–310. [Google Scholar]
- Haris, M.; Shakhnarovich, G.; Ukita, N. Deep Back-Projection Networks for Super-Resolution. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1664–1673. [Google Scholar] [CrossRef] [Green Version]
- Dai, T.; Cai, J.; Zhang, Y.; Xia, S.T.; Zhang, L. Second-Order Attention Network for Single Image Super-Resolution. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 11057–11066. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Z.; Zou, Z. Super-Resolution for Remote Sensing Images via Local-Global Combined Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1243–1247. [Google Scholar] [CrossRef]
- Pan, Z.; Ma, W.; Guo, J.; Lei, B. Super-Resolution of Single Remote Sensing Image Based on Residual Dense Backprojection Networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7918–7933. [Google Scholar] [CrossRef]
- Haut, J.M.; Paoletti, M.E.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.; Li, J. Remote Sensing Single-Image Superresolution Based on a Deep Compendium Model. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1432–1436. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, Q.; Li, J.; Sun, J.; Zhang, X. Scene-Adaptive Remote Sensing Image Super-Resolution Using a Multiscale Attention Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4764–4779. [Google Scholar] [CrossRef]
- Zhang, D.; Shao, J.; Li, X.; Shen, H.T. Remote Sensing Image Super-Resolution via Mixed High-Order Attention Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5183–5196. [Google Scholar] [CrossRef]
- Dong, X.; Wang, L.; Sun, X.; Jia, X.; Gao, L.; Zhang, B. Remote Sensing Image Super-Resolution Using Second-Order Multi-Scale Networks. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3473–3485. [Google Scholar] [CrossRef]
- Xu, W.; XU, G.; Wang, Y.; Sun, X.; Lin, D.; WU, Y. High Quality Remote Sensing Image Super-Resolution Using Deep Memory Connected Network. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8889–8892. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, P.; Jiang, Z. Nonpairwise-Trained Cycle Convolutional Neural Network for Single Remote Sensing Image Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4250–4261. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Liang, Z.; Ouyang, D.; Shao, J. Fused Recurrent Network Via Channel Attention For Remote Sensing Satellite Image Super-Resolution. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 6–10 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Dong, X.; Sun, X.; Jia, X.; Xi, Z.; Gao, L.; Zhang, B. Remote Sensing Image Super-Resolution Using Novel Dense-Sampling Networks. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1618–1633. [Google Scholar] [CrossRef]
- Hui, Z.; Wang, X.; Gao, X. Fast and Accurate Single Image Super-Resolution via Information Distillation Network. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 723–731. [Google Scholar] [CrossRef] [Green Version]
- Hui, Z.; Gao, X.; Yang, Y.; Wang, X. Lightweight Image Super-Resolution with Information Multi-Distillation Network. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; Volume 10, pp. 2024–2032. [Google Scholar]
- Liu, J.; Tang, J.; Wu, G. Residual Feature Distillation Network for Lightweight Image Super-Resolution. In Proceedings of the European Conference on Computer Vision AIM Workshops, Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Wang, Z.; Li, L.; Xue, Y.; Jiang, C.; Wang, J.; Sun, K.; Ma, H. FeNet: Feature Enhancement Network for Lightweight Remote-Sensing Image Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Lan, R.; Sun, L.; Liu, Z.; Lu, H.; Pang, C.; Luo, X. MADNet: A Fast and Lightweight Network for Single-Image Super Resolution. IEEE Trans. Cybern. 2021, 51, 1443–1453. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Kong, X.; He, J.; Qiao, Y.; Dong, C. Efficient Image Super-Resolution Using Pixel Attention. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Yang, Z.; Zhu, L.; Wu, Y.; Yang, Y. Gated Channel Transformation for Visual Recognition. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11791–11800. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Tang, Y.; Tang, J.; Wu, G. Residual Feature Aggregation Network for Image Super-Resolution. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2356–2365. [Google Scholar] [CrossRef]
- Agustsson, E.; Timofte, R. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1122–1131. [Google Scholar] [CrossRef]
- Yang, Y.; Newsam, S. Bag-of-Visual-Words and Spatial Extensions for Land-Use Classification. In Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding. In Proceedings of the 2012 British Machine Vision Conference, Surrey, UK, 3–7 September 2012. [Google Scholar]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image Super-Resolution Via Sparse Representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001, Montreal, BC, Canada, 7–14 July 2001; Volume 2, pp. 416–423. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.B.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5197–5206. [Google Scholar] [CrossRef]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss Functions for Image Restoration with Neural Networks. IEEE Trans. Comput. Imaging 2017, 3, 47–57. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, C.; Zhuge, R.; Wu, Z.; Xu, Y.; Zuo, W.; Chen, C.; Lin, C.W. Lightweight image super-resolution with enhanced CNN. Knowl.-Based Syst. 2020, 205, 106235. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Zhang, L. Learning a Single Convolutional Super-Resolution Network for Multiple Degradations. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3262–3271. [Google Scholar] [CrossRef] [Green Version]
Method | Scale | Params | RS-T1 | RS-T2 |
---|---|---|---|---|
PSNR/SSIM | PSNR/SSIM | |||
Bicubic | - | 33.25/0.8934 | 30.64/0.8837 | |
SRCNN [9] | 57 K | 35.18/0.9243 | 32.87/0.9209 | |
VDSR [12] | 666 K | 35.85/0.9312 | 33.86/0.9312 | |
LGCNet [17] | ×2 | 193 K | 35.65/0.9298 | 33.47/0.9281 |
IDN [27] | 55 3K | 36.13/0.9339 | 34.07/0.9329 | |
LESRCNN [44] | 626 K | 36.04/0.9328 | 34.00/0.9320 | |
FeNet [30] | 351 K | 36.23/0.9341 | 34.22/0.9337 | |
FDENet (ours) | 480 K | 36.26/0.9346 | 34.28/0.9338 | |
Bicubic | - | 29.73/0.7818 | 27.23/0.7697 | |
SRCNN [9] | 57 K | 30.95/0.8228 | 28.59/0.8180 | |
VDSR [12] | 666 K | 31.55/0.8352 | 29.40/0.8391 | |
LGCNet [17] | ×3 | 193 K | 31.30/0.8314 | 29.03/0.8312 |
IDN [27] | 553 K | 31.73/0.8430 | 29.59/0.8450 | |
LESRCNN [44] | 810 K | 31.68/0.8398 | 29.65/0.8444 | |
FeNet [30] | 357 K | 31.89/0.8432 | 29.80/0.8481 | |
FDENet (ours) | 488 K | 31.98/0.8488 | 29.88/0.8489 | |
Bicubic | - | 27.91/0.6968 | 25.40/0.6770 | |
SRCNN [9] | 57 K | 28.87/0.7382 | 26.46/0.7296 | |
VDSR [12] | 666 K | 29.33/0.7546 | 27.03/0.7525 | |
LGCNet [17] | ×4 | 193 K | 29.13/0.7481 | 26.76/0.7426 |
IDN [27] | 553 K | 29.56/0.7623 | 27.31/0.7627 | |
LESRCNN [44] | 774 K | 29.62/0.7625 | 27.41/0.7646 | |
FeNet [30] | 366 K | 29.70/0.7688 | 27.45/0.7672 | |
FDENet (ours) | 501 K | 29.72/0.7658 | 27.54/0.7697 |
Method | Scale | Params | Multi-Adds | Set5 | Set14 | B100 | Urban100 |
---|---|---|---|---|---|---|---|
PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | ||||
Bicubic | - | - | 33.66/0.9299 | 30.24/0.8688 | 29.56/0.8431 | 26.88/0.8403 | |
SRCNN [9] | 57 K | 52.7 G | 36.66/0.9542 | 32.45/0.9067 | 31.36/0.8879 | 29.50/0.8946 | |
VDSR [12] | 666 K | 612.6 G | 37.53/0.9587 | 33.03/0.9124 | 31.90/0.8960 | 30.76/0.9140 | |
LGCNet [17] | 193 K | 178.1G | 37.31/0.9580 | 32.94/0.9120 | 31.74/0.8939 | 30.53/0.9112 | |
SRMDNF [45] | 1513 K | 347.7 G | 37.79/0.9600 | 33.32/0.9150 | 32.05/0.8980 | 31.33/0.9200 | |
IDN [27] | ×2 | 553 K | 124.6 G | 37.83/0.9600 | 33.30/0.9148 | 32.08/0.8985 | 31.27/0.9196 |
LESRCNN [44] | 626 K | 281.5 G | 37.65/0.9586 | 33.32/0.9148 | 31.95/0.8964 | 31.45/0.9206 | |
MADNet [32] | 878 K | 187.1 G | 37.94/0.9604 | 33.46/0.9167 | 32.10/0.8988 | 31.74/0.9246 | |
FeNet [30] | 351 K | 77.9 G | 37.90/0.9602 | 33.45/0.9162 | 32.09/0.8985 | 31.75/0.9245 | |
FDENet (ours) | 480 K | 138.7 G | 37.89/0.9594 | 33.50/0.9170 | 32.15/0.8988 | 32.02/0.9270 | |
Bicubic | - | - | 30.39/0.8682 | 27.55/0.7742 | 27.21/0.7385 | 24.46/0.7349 | |
SRCNN [9] | 57 K | 52.7 G | 32.75/0.9090 | 29.30/0.8215 | 28.41/0.7863 | 26.24/0.7989 | |
VDSR [12] | 666 K | 612.6 G | 33.66/0.9213 | 29.77/0.8314 | 28.82/0.7976 | 27.14/0.8279 | |
LGCNet [17] | 193 K | 79.0 G | 33.32/0.9172 | 29.67/0.8289 | 28.63/0.7923 | 26.77/0.8180 | |
SRMDNF [45] | 1530K | 156.3 G | 34.12/0.9250 | 30.04/0.8370 | 28.97/0.8030 | 27.57/0.8400 | |
IDN [27] | ×3 | 553 K | 56.3 G | 34.11/0.9253 | 29.99/0.8354 | 28.95/0.8013 | 27.42/0.8359 |
LESRCNN [44] | 810 K | 238.9 G | 33.93/0.9231 | 30.12/0.8380 | 28.91/0.8005 | 27.70/0.8415 | |
MADNet [31] | 930 K | 88.4 G | 34.26/0.9262 | 30.29/0.8410 | 29.04/0.8033 | 27.91/0.8464 | |
FeNet [30] | 357 K | 35.2 G | 34.21/0.9256 | 30.15/0.8383 | 28.98/0.8020 | 27.82/0.8447 | |
FDENet (ours) | 488 K | 61.7 G | 34.28/0.9253 | 30.33/0.8415 | 29.05/0.8033 | 28.03/0.8494 | |
Bicubic | - | - | 28.42/0.8104 | 26.00/0.7027 | 25.96/0.6675 | 23.14/0.6577 | |
SRCNN [9] | 57 K | 52.7 G | 30.48/0.8628 | 27.50/0.7513 | 26.90/0.7101 | 24.52/0.7221 | |
VDSR [12] | 666 K | 612.6 G | 31.35/0.8838 | 28.01/0.7674 | 27.29/0.7251 | 25.18/0.7524 | |
LGCNet [17] | 193 K | 44.5 G | 30.87/0.8746 | 27.82/0.7630 | 27.08/0.7186 | 24.82/0.7399 | |
SRMDNF [45] | 1555 K | 89.3 G | 31.96/0.8930 | 28.35/0.7770 | 27.49/0.7340 | 25.68/0.7730 | |
IDN [27] | ×4 | 553 K | 32.3 G | 31.82/0.8903 | 28.25/0.7730 | 27.41/0.7297 | 25.41/0.7632 |
LESRCNN [44] | 774 K | 241.6 G | 31.88/0.8903 | 28.44/0.7772 | 27.45/0.7313 | 25.77/0.7732 | |
MADNet [31] | 1002 K | 54.1 G | 32.11/0.8939 | 28.52/0.7799 | 27.52/0.7340 | 25.89/0.7782 | |
FeNet [30] | 366 K | 20.4 G | 32.02/0.8919 | 28.38/0.7764 | 27.47/0.7319 | 25.75/0.7747 | |
FDENet (ours) | 501 K | 35.9 G | 32.12/0.8929 | 28.52/0.7795 | 27.53/0.7339 | 25.97/0.7811 |
Method | Params | RS-T1 | RS-T2 | BSD100 | Urban100 |
---|---|---|---|---|---|
With SRB | 501K | 29.68/0.7675 | 27.52/0.7697 | 27.52/0.7341 | 25.94/0.7815 |
with SRAB | 501K | 29.72/0.7658 | 27.54/0.7697 | 27.53/0.7339 | 25.97/0.7811 |
Method | Params | RS-T1 | RS-T2 | BSD100 | Urban100 |
---|---|---|---|---|---|
With ESA | 463K | 29.70/0.7656 | 27.55/0.7692 | 27.51/0.7335 | 25.88/0.7779 |
with BFEM | 501K | 29.72/0.7658 | 27.54/0.7697 | 27.53/0.7339 | 25.97/0.7811 |
Method | Params | RS-T1 | RS-T2 | BSD100 | Urban100 |
---|---|---|---|---|---|
w/o SFM | 492K | 29.69/0.7652 | 27.53/0.7691 | 27.52/0.7335 | 25.88/0.7796 |
w/ SFM | 501K | 29.72/0.7658 | 27.54/0.7697 | 27.53/0.7339 | 25.97/0.7811 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Li, L.; Wang, J.; Sun, K.; Lv, M.; Jia, Z.; Ma, H. A Lightweight Feature Distillation and Enhancement Network for Super-Resolution Remote Sensing Images. Sensors 2023, 23, 3906. https://doi.org/10.3390/s23083906
Gao F, Li L, Wang J, Sun K, Lv M, Jia Z, Ma H. A Lightweight Feature Distillation and Enhancement Network for Super-Resolution Remote Sensing Images. Sensors. 2023; 23(8):3906. https://doi.org/10.3390/s23083906
Chicago/Turabian StyleGao, Feng, Liangliang Li, Jiawen Wang, Kaipeng Sun, Ming Lv, Zhenhong Jia, and Hongbing Ma. 2023. "A Lightweight Feature Distillation and Enhancement Network for Super-Resolution Remote Sensing Images" Sensors 23, no. 8: 3906. https://doi.org/10.3390/s23083906