IoT and Deep Learning-Based Farmer Safety System
Abstract
:1. Introduction
- We utilized a quaternion as an input feature to represent 3D rotation.
- We evaluated the approaches on both large-scale egocentric datasets and farming pack mocap datasets, and demonstrate that our proposed method is practical regarding computational efficiency and result.
- Using the proposed algorithm, we determined the optimal solutions for the proposed system.
- With the same train test data, the proposed algorithm, HTM classifier, and (k-Nearest Neighbor) kNN classifier were compared.
- The performances of the two algorithms were compared using different performance metrics.
2. Related Works
3. Problem Definition
3.1. Classification
3.2. Temporal Classification
3.3. Hierarchical Temporal Classification
4. Materials and Methods
4.1. Materials
4.1.1. Validation Dataset
4.1.2. Farming-Pack Mocap Dataset
4.2. Method
4.2.1. Feature Extraction
4.2.2. Encoding Data
4.2.3. Spatial Pooling
4.2.4. Temporal Memory
4.2.5. Sparse Distributed Representation (SDR) Classifier
4.2.6. Performance Metrics Evaluation
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, G.; Martin-Clouaire, R.; Duru, M. Farming system design to feed the changing world: A review. Agron. Sustain. Dev. 2013, 33, 131–149. [Google Scholar] [CrossRef] [Green Version]
- United Nations Department of Economic and Social Affairs. Growing at a Slower Pace, World Population is Expected to Reach 9.7 Billion in 2050 and Could Peak at Nearly 11 Billion Around 2100. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html (accessed on 1 June 2021).
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working Paper No.12-03.; Agricultural Development Economics Division, Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Food and Agriculturre Organization of the United Nations, How to Feed the World 2050: Proceedings of a Technical Meeting of Experts, Rome, Italy, 24–26 June 2009; Food and Agriculturre Organization of the United Nations (FAO): Rome, Italy, 2009.
- Walter, A.; Robert Finger, R.H.; Buchmann, N. Smart farming is key to developing sustainable agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, E.S.; Belal, A.A.; Abd-Elmabod, S.K.; El-Shirbeny, M.A.; Gad, A.; Zahran, M.B. Smart farming for improving agricultural management. Egypt. J. Remote. Sens. Space Sci. 2021, 24, 971–981. [Google Scholar] [CrossRef]
- Rose, D.C.; Chilvers, J. Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Front. Sustain. Food Syst. 2018, 2, 87. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Shen, K.; Case, B.; Garg, D.; Alperovich, G.; Kuznetsov, D.; Kuznetsov, D.; Gupta, R.; Durumeric, Z. All Things Considered: An Analysis of IoT Devices on Home Networks. In Proceedings of the 28th USENIX Conference on Security Symposium, Santa Clara, CA, USA, 14–16 August 2019; USENIX Association: Berkeley, CA, USA, 2019; pp. 1169–1185. [Google Scholar]
- Swaroop, K.N.; Chandu, K.; Gorrepotu, R.; Deb, S. A health monitoring system for vital signs using IoT. Internet Things 2019, 5, 116–129. [Google Scholar] [CrossRef]
- Saminathan, S.; Geetha, K. A Survey on Health Care Monitoring System Using IoT. Int. J. Pure Appl. Math. 2017, 117, 249–254. [Google Scholar]
- Saranya, M.; Preethi, R.; Rupasri, M.; Veena, S. A Survey on Health Monitoring System by using IOT. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 778–782. [Google Scholar] [CrossRef]
- Fukatsu, T.; Nanseki, T. Farm Operation Monitoring System with Wearable Sensor Devices Including RFID; IntechOpen: London, UK, 2011. [Google Scholar]
- Health and Safety Executive. Fatal Injuries in Agriculture, Forestry and Fishing in Great Britain (1 April 2021 to 31 March 2022); Health and Safety Executive: London, UK, 2022. [Google Scholar]
- Thibaud, M.; Chi, H.; Zhou, W.; Piramuthu, S. Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review. Decis. Support Syst. 2018, 108, 79–95. [Google Scholar] [CrossRef]
- Bergen, G.; Chen, L.H.; Warner, M.; Fingerhut, L.A. Injury in the United States: 2007 Chartbook (March 2008); National Center for Health Statistics: Hyattsville, MD, USA, 2008. [Google Scholar]
- World Health Organization. Falls. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 1 June 2021).
- Fukatsu, T.; Nanseki, T. Monitoring system for farming operations with wearable devices utilized sensor networks. Sensors 2009, 9, 6171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delahoz, Y.S.; Labrador, M.A. Survey on Fall Detection and Fall Prevention Using Wearable and External Sensors. Sensors 2014, 14, 9806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rungnapakan, T.; Chintakovid, T.; Wuttidittachotti, P. Fall Detection Using Accelerometer, Gyroscope & Impact Force Calculation on Android Smartphones. In Proceedings of the CHIuXiD ’18: Proceedings of the 4th International Conference on Human-Computer Interaction and User Experience in, Indonesia, Yogyakarta, Indonesia, 23–29 March 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 49–53. [Google Scholar]
- Lim, D.; Park, C.; Kim, N.H.; Kim, S.H.; Yu, Y.S. Fall-Detection Algorithm Using 3-Axis Acceleration:Combination with Simple Threshold and Hidden Markov Model. J. Appl. Math. 2014, 2014, 896030. [Google Scholar] [CrossRef] [Green Version]
- EuclideanSpace. EuclideanSpace—Maths-Quaternion. Available online: https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/index.htm (accessed on 1 June 2021).
- Yannick Millot, P.P.M. Active and passive rotations with Euler angles in NMR. Concepts Magn. Reson 2022, 40A, 215–252. [Google Scholar] [CrossRef]
- Allgeuer, P.; Behnke, S. Fused Angles and the Deficiencies of Euler Angles. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 5109–5116. [Google Scholar]
- Janota, A.; Šimák, V.; Nemec, D.; Hrbček, J. Improving the precision and speed of Euler angles computation from low-cost rotation sensor data. Sensors 2015, 15, 7016. [Google Scholar] [CrossRef]
- Tastan, M. IoT Based Wearable Smart Health Monitoring System. Celal Bayar Univ. Fen Bilim. Derg. 2018, 14, 343–350. [Google Scholar]
- Wcislik, M.; Pozoga, M.; Smerdzynski, P. Wireless Health Monitoring System. IFAC-PapersOnLine 2015, 48, 312–317. [Google Scholar] [CrossRef]
- Yacchirema, D.; de Puga, J.S.; Palau, C.; Esteve, M. Fall detection system for elderly people using IoT and Big Data. Procedia Comput. Sci. 2018, 130, 603–610. [Google Scholar] [CrossRef]
- Challis, J.H. Quaternions as a solution to determining the angular kinematics of human movement. BMC Biomed. Eng. 2020, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Rong, G.; Zheng, Y.; Sawan, M. Energy Solutions for Wearable Sensors: A Review. Sensors 2021, 21, 3806. [Google Scholar] [CrossRef]
- Wu, F.; Wu, T.; Yuce, M.R. An Internet-of-Things (IoT) Network System for Connected Safety and Health Monitoring Applications. Sensors 2019, 19, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khojasteh, S.B.; Villar, J.R.; Chira, C.; González, V.M.; De la Cal, E. Improving Fall Detection Using an On-Wrist Wearable Accelerometer. Sensors 2018, 18, 1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Zhao, H.; Zhao, Y.; Zhong, H. Development of a Wearable-Sensor-Based Fall Detection System. Int. J. Telemed. Appl. 2015, 2015, e576364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations. The Sustainable Development Goals Report 2022; United Nations: New York, NY, USA, 2022. [Google Scholar]
- Banerjee, A.; Chakraborty, C.; Kumar, A.; Biswas, D. Chapter 5—Emerging trends in IoT and big data analytics for biomedical and health care technologies. Handbook of Data Science Approaches for Biomedical Engineering; Academic Press: Cambridge, MA, USA, 2020; pp. 121–152. [Google Scholar] [CrossRef]
- Pawar, M.V.; Pawar, P.; Pawar, A.M. Chapter 2—HealthWare telemedicine technology (HWTT) evolution map for healthcare. Wearable Telemedicine Technology for the Healthcare Industry; Academic Press: Cambridge, MA, USA, 2022; pp. 17–32. [Google Scholar] [CrossRef]
- Ranganathan Chandrasekaran, V.K.; Moustakas, E. Patterns of Use and Key Predictors for the Use of Wearable Health Care Devices by US Adults: Insights from a National Survey. J. Med. Internet Res. 2020, 22, e22443. [Google Scholar] [CrossRef]
- Rezayi, S. Chapter 5—Controlling vital signs of patients in emergencies by wearable smart sensors. Wearable Telemedicine Technology for the Healthcare Industry; Academic Press: Cambridge, MA, USA, 2022; pp. 71–86. [Google Scholar] [CrossRef]
- Perez-Pozuelo, I.; Spathis, D.; Clifton, E.A.; Mascolo, C. Chapter 3—Wearables, smartphones, and artificial intelligence for digital phenotyping and health. Digital Health; Elsevier: Amsterdam, The Netherlands, 2021; pp. 33–54. [Google Scholar] [CrossRef]
- Guo, X.; Choi, J. Human Motion Prediction via Learning Local Structure Representations and Temporal Dependencies. Proc. AAAI Conf. Artif. Intell. 2019, 33, 2580–2587. [Google Scholar] [CrossRef] [Green Version]
- Bütepage, J.; Black, M.J.; Kragic, D.; Kjellström, H. Deep Representation Learning for Human Motion Prediction and Classification. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1591–1599. [Google Scholar]
- Hai, P.T.; Kha, H.H. An efficient star skeleton extraction for human action recognition using hidden Markov models. In Proceedings of the 2016 IEEE Sixth International Conference on Communications and Electronics (ICCE), Novotel, Ha Long, Vietnam, 27–29 July 2016; pp. 351–356. [Google Scholar] [CrossRef]
- Spiliotis, E.; Abolghasemi, M.; Hyndman, R.J.; Petropoulos, F.; Assimakopoulos, V. Hierarchical forecast reconciliation with machine learning. Appl. Soft Comput. 2021, 112, 107756. [Google Scholar] [CrossRef]
- Sagheer, A.; Hamdoun, H.; Youness, H. Deep LSTM-Based Transfer Learning Approach for Coherent Forecasts in Hierarchical Time Series. Sensors 2021, 21, 4379. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.P.; Lorena, A.C.; Carvalho, A.C.P.L.F.; Freitas, A.A.; Holden, N. Comparing Several Approaches for Hierarchical Classification of Proteins with Decision Trees. In Advances in Bioinformatics and Computational Biology: Second Brazilian Symposium on Bioinformatics, Proceedings of the Advances in Bioinformatics and Computational Biology, Angra dos Reis, Brazil, 29–31 August 2007; Sagot, M.F., Walter, M.E.M.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 126–137. [Google Scholar]
- Xiu, Y.; Li, J.; Wang, H.; Fang, Y.; Lu, C. Pose Flow: Efficient Online Pose Tracking. In British Machine Vision Conference 2018, BMVC 2018, Newcastle, UK, 3–6 September 2018; BMVA Press, 2018; p. 53. [Google Scholar]
- Fang, H.; Xie, S.; Tai, Y.; Lu, C. RMPE: Regional Multi-person Pose Estimation. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE Computer Society: Los Alamitos, CA, USA, 2017; pp. 2353–2362. [Google Scholar] [CrossRef] [Green Version]
- Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [Google Scholar]
- Martinez, J.; Hossain, R.; Romero, J.; Little, J.J. A Simple Yet Effective Baseline for 3d Human Pose Estimation. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE Computer Society: Los Alamitos, CA, USA, 2017; pp. 2659–2668. [Google Scholar] [CrossRef] [Green Version]
- Cascade Classification—Opencv 2.4.13.7 Documentation. Available online: https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html?highlight=cascadeclassifier#cascadeclassifier (accessed on 1 June 2021).
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001; p. I. Volume 1. [Google Scholar] [CrossRef]
- Obukhov, A. Chapter 33—Haar Classifiers for Object Detection with CUDA. In GPU Computing Gems Emerald Edition; Hwu, W.-m.W., Ed.; Applications of GPU Computing Series; Morgan Kaufmann: Boston, MA, USA, 2011; pp. 517–544. [Google Scholar] [CrossRef]
- Monakhov, V.; Thambawita, V.; Halvorsen, P.; Riegler, M.A. GridHTM: Grid-Based Hierarchical Temporal Memory for Anomaly Detection in Videos. Sensors 2023, 23, 2087. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Tjahjadi, T. Gait Recognition and Understanding Based on Hierarchical Temporal Memory Using 3D Gait Semantic Folding. Sensors 2020, 20, 1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Zhao, F.; Luo, S.; Xin, Y.; Zhu, H.; Chen, Y. Online Intrusion Scenario Discovery and Prediction Based on Hierarchical Temporal Memory (HTM). Appl. Sci. 2020, 10, 2596. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.V.; Pham, K.V.; Min, K.S. Hybrid Circuit of Memristor and Complementary Metal-Oxide-Semiconductor for Defect-Tolerant Spatial Pooling with Boost-Factor Adjustment. Materials 2019, 12, 2122. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.V.; Pham, K.V.; Min, K.S. Memristor-CMOS Hybrid Circuit for Temporal-Pooling of Sensory and Hippocampal Responses of Cortical Neurons. Materials 2019, 12, 875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perea-Moreno, A.J.; Aguilera-Ureña, M.J.; Meroño-De Larriva, J.E.; Manzano-Agugliaro, F. Assessment of the Potential of UAV Video Image Analysis for Planning Irrigation Needs of Golf Courses. Water 2016, 8, 584. [Google Scholar] [CrossRef] [Green Version]
- Ding, N.; Gao, H.; Bu, H.; Ma, H.; Si, H. Multivariate-Time-Series-Driven Real-time Anomaly Detection Based on Bayesian Network. Sensors 2018, 18, 3367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van-Horenbeke, F.A.; Peer, A. NILRNN: A Neocortex-Inspired Locally Recurrent Neural Network for Unsupervised Feature Learning in Sequential Data. Cogn. Comput. 2023. [Google Scholar] [CrossRef]
- Dzhivelikian, E.; Latyshev, A.; Kuderov, P.; Panov, A.I. Hierarchical intrinsically motivated agent planning behavior with dreaming in grid environments. Brain Inform. 2022, 9, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Dobric, D.; Pech, A.; Ghita, B.; Wennekers, T. On the Importance of the Newborn Stage When Learning Patterns with the Spatial Pooler. SN Comput. Sci. 2022, 3, 179. [Google Scholar] [CrossRef]
- Chakraborty, P.; Bhunia, S. BINGO: Brain-inspired learning memory. Neural Comput. Appl. 2022, 34, 3223–3247. [Google Scholar] [CrossRef]
- Ding, C.; Zhao, J.; Sun, S. Concept Drift Adaptation for Time Series Anomaly Detection via Transformer. Neural Process. Lett. 2022. [Google Scholar] [CrossRef]
- Teng, S.Y.; Máša, V.; Touš, M.; Vondra, M.; Lam, H.L.; Stehlík, P. Waste-to-energy forecasting and real-time optimization: An anomaly-aware approach. Renew. Energy 2022, 181, 142–155. [Google Scholar] [CrossRef]
- Rodkin, I.; Petr Kuderov, A.I.P. Stability and Similarity Detection for the Biologically Inspired Temporal Pooler Algorithms. Procedia Comput. Sci. 2022, 213, 570–579. [Google Scholar] [CrossRef]
- Melnykova, N.; Kulievych, R.; Vycluk, Y.; Melnykova, K.; Melnykov, V. Anomalies Detecting in Medical Metrics Using Machine Learning Tools. Procedia Comput. Sci. 2022, 198, 718–723. [Google Scholar] [CrossRef]
- Rodríguez-Flores, T.C.; Palomo-Briones, G.A.; Robles, F.; Ramos, F. Proposal for a computational model of incentive memory. Cogn. Syst. Res. 2023, 77, 153–173. [Google Scholar] [CrossRef]
- George, A.M.; Dey, S.; Banerjee, D.; Mukherjee, A.; Suri, M. Online time-series forecasting using spiking reservoir. Neurocomputing 2023, 518, 82–94. [Google Scholar] [CrossRef]
- Thill, M.; Konen, W.; Wang, H.; Bäck, T. Temporal convolutional autoencoder for unsupervised anomaly detection in time series. Appl. Soft Comput. 2021, 112, 107751. [Google Scholar] [CrossRef]
- Numenta. Numenta Releases Grok for IT Analytics on AWS. Available online: https://numenta.com/press/2014/03/25/numenta-releases-grok-for-it-analytics-on-aws/ (accessed on 1 June 2021).
- Numenta. Detect Anomalies in Publicly Traded Stocks Using Trading and Twitter Data. Available online: https://numenta.com/assets/pdf/apps/htmforstocks.pdf (accessed on 1 June 2021).
- Numenta. Rogue Behavior Detection. Available online: https://numenta.com/assets/pdf/whitepapers/Rogue%20Behavior%20Detection%20White%20Paper.pdf (accessed on 1 June 2021).
- Numenta. The Path to Machine Intelligence. Available online: https://numenta.com/assets/pdf/whitepapers/Numenta%20-%20Path%20to%20Machine%20Intelligence%20White%20Paper.pdf (accessed on 1 June 2021).
- Numenta. Geospatial Tracking. Available online: https://numenta.com/assets/pdf/whitepapers/Geospatial%20Tracking%20White%20Paper.pdf (accessed on 1 June 2021).
- Bifet, A.; Gavalda, R.; Holmes, G.; Pfahringer, B. Machine Learning for Data Streams with Practical Examples in MOA; MIT Press: Cambridge, MA, USA, 2018; Available online: https://moa.cms.waikato.ac.nz/book/ (accessed on 1 June 2021).
- Pérez-Ortiz, M.; Jiménez-Fernández, S.; Gutiérrez, P.A.; Alexandre, E.; Hervás-Martínez, C.; Salcedo-Sanz, S. A Review of Classification Problems and Algorithms in Renewable Energy Applications. Energies 2016, 9, 607. [Google Scholar] [CrossRef] [Green Version]
- Cotofrei, P.; Stoffel, K. Classification Rules + Time = Temporal Rules. In Proceedings of the Computational Science, ICCS 2002, Amsterdam, The Netherlands, 21–24 April 2002; Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 572–581. [Google Scholar]
- Kadous, M.W. Temporal Classification: Extending the Classification Paradigm to Multivariate Time Series. Ph.D. Thesis, School of Computer Science and Engineering, The University of New South Wales, Kensington, Australia, 2002. [Google Scholar]
- Kadous, M.W.; Sammut, C. Classification of Multivariate Time Series and Structured Data Using Constructive Induction. Mach. Learn. 2005, 58, 179–216. [Google Scholar] [CrossRef] [Green Version]
- Graves, A.; Fernández, S.; Gomez, F.; Schmidhuber, J. Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; Association for Computing Machinery: New York, NY, USA, 2006; pp. 369–376. [Google Scholar] [CrossRef]
- Hawkins, J.; Blakeslee, S. On Intelligence: Times Books; Henry Holt and Company: New York, NY, USA, 2008. [Google Scholar]
- Hawkins, J.; Lewis, M.; Klukas, M.; Purdy, S.; Ahmad, S. A Framework for Intelligence and Cortical Function Based on Grid Cells in the Neocortex. Front. Neural Circuits 2019, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, J.; Ahmad, S.; Cui, Y. A Theory of How Columns in the Neocortex Enable Learning the Structure of the World. Front. Neural Circuits 2017, 11, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, M.; Purdy, S.; Ahmad, S.; Hawkins, J. Locations in the Neocortex: A Theory of Sensorimotor Object Recognition Using Cortical Grid Cells. Front. Neural Circuits 2019, 13, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanowski, J.; Brzezinski, D. Stream Classification. In Encyclopedia of Machine Learning and Data Mining; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2016; pp. 1–9. [Google Scholar] [CrossRef]
- Cerri, R.; Barros, R.C.; de Carvalho, A.C. Hierarchical multi-label classification using local neural networks. J. Comput. Syst. Sci. 2014, 80, 39–56. [Google Scholar] [CrossRef]
- Damen, D.; Doughty, H.; Farinella, G.M.; Fidler, S.; Furnari, A.; Kazakos, E.; Moltisanti, D.; Munro, J.; Perrett, T.; Price, W.; et al. Scaling Egocentric Vision: The EPIC-KITCHENS Dataset. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Damen, D.; Doughty, H.; Farinella, G.; Fidler, S.; Furnari, A.; Kazakos, E.; Moltisanti, D.; Munro, J.; Perrett, T.; Price, W.; et al. The EPIC-KITCHENS Dataset: Collection, Challenges and Baselines. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 4125–4141. [Google Scholar] [CrossRef]
- Adobe Mixamo-Farming Pack. Available online: https://www.mixamo.com/#/?page=1&query=farming+pack&type=Motion%2CMotionPack (accessed on 12 August 2022).
- Abdulla, U.A.; Taylor, K.; Barlow, M.; Naqshbandi, K.Z. Measuring Walking and Running Cadence Using Magnetometers. In Proceedings of the 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, Melbourne, VIC, Australia, 16–18 July 2013; pp. 1458–1462. [Google Scholar] [CrossRef]
- Gjoreski, H.; Lustrek, M.; Gams, M. Accelerometer Placement for Posture Recognition and Fall Detection. In Proceedings of the 2011 Seventh International Conference on Intelligent Environments, Nottingham, UK, 25–28 July 2011; pp. 47–54. [Google Scholar] [CrossRef] [Green Version]
- Cleland, I.; Kikhia, B.; Nugent, C.; Boytsov, A.; Hallberg, J.; Synnes, K.; McClean, S.; Finlay, D. Optimal placement of accelerometers for the detection of everyday activities. Sensors 2013, 13, 9183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannurat, N.; Thiemjarus, S.; Nantajeewarawat, E.; Anantavrasilp, I. Analysis of Optimal Sensor Positions for Activity Classification and Application on a Different Data Collection Scenario. Sensors 2019, 17, 774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.D.; Bui, D.T.; Truong, P.H.; Jeong, G.M. Position-Based Feature Selection for Body Sensors regarding Daily Living Activity Recognition. J. Sensors 2018, 2018, 9762098. [Google Scholar] [CrossRef] [Green Version]
- Arvidsson, D.; Fridolfsson, J.; Börjesson, M. Measurement of physical activity in clinical practice using accelerometers. J. Intern. Med. 2019, 286, 137–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sony. Mocopi. Available online: https://www.sony.jp/mocopi/ (accessed on 2 March 2023).
- HTC Corporation. Vive Tracker. Available online: https://www.vive.com/jp/accessory/vive-tracker/ (accessed on 2 March 2023).
- Unity Documentation. Unity Documentation: Quaternion 2021. Available online: https://docs.unity3d.com/ScriptReference/Quaternion-w.html (accessed on 1 June 2021).
- OpenGL. OpenGL-Tutorial: Tutorial 17: Rotation. Available online: https://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/ (accessed on 1 June 2021).
- OpenGL. Wiki SecondLife: Quaternion. Available online: https://wiki.secondlife.com/wiki/Quaternion (accessed on 1 June 2021).
- Jia, Y.-B. Quaternions and Rotations. Available online: https://web.cs.iastate.edu/cs577/handouts/quaternion.pdf (accessed on 1 June 2021).
- Wikipedia. Quaternion. Available online: https://en.wikipedia.org/wiki/Quaternion (accessed on 1 June 2021).
- Kou, K.I.; Xia, Y.H. Linear Quaternion Differential Equations: Basic Theory and Fundamental Results. Stud. Appl. Math. 2018, 141, 3–45. [Google Scholar] [CrossRef]
- Wu, J.; Zeng, W.; Yan, F. Hierarchical Temporal Memory method for time-series-based anomaly detection. Neurocomputing 2018, 273, 535–546. [Google Scholar] [CrossRef]
- Sousa, R.; Lima, T.; Abelha, A.; Machado, J. Hierarchical Temporal Memory Theory Approach to Stock Market Time Series Forecasting. Electronics 2021, 10, 1630. [Google Scholar] [CrossRef]
CategoryEncoder | Activity |
---|---|
M01 | Working with a wheelbarrow |
M02 | picking fruit |
M03 | milking cow |
M04 | watering plant |
M05 | holding activity |
M06 | planting a plant |
M07 | planting a tree |
M08 | pull-out a plant |
M09 | digging and planting seeds |
M10 | kneeling |
M11 | working with a box |
HTM 1 | kNN 2 | |||
---|---|---|---|---|
Metrics | Validation Dataset | Farming-Pack Mocap Dataset | Validation Dataset | Farming-Pack Mocap Dataset |
Accuracy (%) | 88.00 | 54.00 | 13.00 | 40.00 |
Precision | 0.99 | 0.97 | 0.14 | 0.16 |
Recall | 0.04 | 0.50 | 0.13 | 0.40 |
F_Score | 0.09 | 0.66 | 0.12 | 0.23 |
MSE 3 (%) | 5.10 | 0.06 | 30.00 | 25.00 |
MAE 4 (%) | 0.19 | 3.24 | 13.00 | 3.39 |
RMSE 5 (%) | 0.38 | 1.51 | 5.47 | 5.00 |
By | Dataset | Method | Results |
---|---|---|---|
[39] | Human3.6M | Average/standard deviation | |
RRNN | 0.97/0.23 | ||
CSS | 0.77/0.21 | ||
SkelNeT | 0.76/0.21 | ||
Skel-TNet | 0.73/0.21 | ||
CMU mocap dataset | Average/standard deviation | ||
CSS | 0.61/0.18 | ||
SkelNeT | 0.60/0.21 | ||
Skel-TNet | 0.55/0.21 | ||
[40] | CMU mocap dataset | Classification rate | |
Data Point | 0.76 | ||
PCA | 0.73 | ||
DSAE | 0.72 | ||
S-TE | 0.78 | ||
C-TE | 0.78 | ||
H-TE | 0.77 | ||
[41] | Training Database | Accuracy | |
HMM | Stand = 88.67 | ||
Walk = 86.20 | |||
Run = 82.70 | |||
Jump = 76.30 | |||
Fall = 72.03 | |||
Lie = 86.23 | |||
Sit = 92.70 |
By | Dataset | Method | Results |
---|---|---|---|
[42] | Tourism | Metrics | |
xGBoost | MASE = 0.92 | ||
RMSSE = 1.16 | |||
AMSE = 0.49 | |||
Sales | Metrics | ||
Random Forest | MASE = 0.45 | ||
RMSSE = 0.67 | |||
AMSE = 0.30 | |||
[43] | Brazilian electrical | DLSTM | Metrics: RMSE |
power generation | level 0 = 0.60 | ||
level 1 = 1.02 | |||
level 2 = 2.91 | |||
Australian visitor nights | DLSTM | Metrics: RMSE | |
of domestic tourism | level 0 = 2.27 | ||
level 1 = 5.26 | |||
level 2 = 6.34 | |||
level 3 = 8.07 | |||
[44] | Tourism | Metrics:accuracy | |
Flat (Leaves) | 61.33 | ||
Flat (all levels) | 87.80 | ||
Top-Down | 87.80 | ||
Big-Bang | 91.13 | ||
Enzyme protein families | Metrics:accuracy | ||
Flat (leaves) | 82.73 | ||
Flat (all levels) | 89.78 | ||
Top-Down | 89.78 | ||
Big-Bang | 96.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhitya, Y.; Mulyani, G.S.; Köppen, M.; Leu, J.-S. IoT and Deep Learning-Based Farmer Safety System. Sensors 2023, 23, 2951. https://doi.org/10.3390/s23062951
Adhitya Y, Mulyani GS, Köppen M, Leu J-S. IoT and Deep Learning-Based Farmer Safety System. Sensors. 2023; 23(6):2951. https://doi.org/10.3390/s23062951
Chicago/Turabian StyleAdhitya, Yudhi, Grathya Sri Mulyani, Mario Köppen, and Jenq-Shiou Leu. 2023. "IoT and Deep Learning-Based Farmer Safety System" Sensors 23, no. 6: 2951. https://doi.org/10.3390/s23062951