Research Advances on Fiber-Optic SPR Sensors with Temperature Self-Compensation
Abstract
:1. Introduction
2. The Mechanism of Temperature Self-Compensating Fiber-Optic Surface Plasmon Resonance Sensors
3. The Structure of Temperature Self-Compensating Fiber SPR Sensors
3.1. Quartz Fiber Surface Plasmon Resonance Microstructure
3.1.1. Cylindrical Structure
3.1.2. V-Shaped Structure
3.1.3. D-Shaped Structure
3.1.4. Interference and SPR Hybrid Structure
3.2. Photonic Crystal Fiber Structure
3.2.1. Single D-Shaped Structure [48,49,50,51,52,53]
3.2.2. Double D-Shaped [54,55] and Double Core Structure [56,57]
3.2.3. Other Structures
3.3. Fiber Grating Structure
3.4. Plastic Optical Fiber Structure
4. Application of Temperature Self-Compensating Fiber SPR Sensor
4.1. Environmental Monitoring
4.2. Physical Quantity Sensing
4.3. Biological Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Jorgenson, R.C.; Yee, S.S. A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuator B Chem. 1993, 12, 213–220. [Google Scholar] [CrossRef]
- Siddik, A.B.; Hossain, S.; Paul, A.K.; Rahman, M.; Mollah, A. High sensitivity property of dual-core photonic crystal fiber temperature sensor based on surface plasmon resonance. Sens. Bio-Sens. Res. 2020, 29, 100350. [Google Scholar] [CrossRef]
- Liu, H.; Bai, B.B.; Zhang, Y.Z.; Chen, C.; Shao, Q.Y.; Wang, H.R. High-Sensitivity Temperature Measurement Based on SPR in Gold-PDMS-Coated Photonic Crystal Fiber. Chin. J. Lasers 2020, 47, 0404003. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, Y.; Cao, S.; Huang, Y.; Zhang, L.; Zhang, F.; Liao, C.; Wang, Y. Mechanism and Characteristics of Humidity Sensing with Polyvinyl Alcohol-Coated Fiber Surface Plasmon Resonance Sensor. Sensors 2018, 18, 2029. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.P.; Dong, J.L.; Hu, S.Q.; Zhang, Y.X.; Chen, Y.F.; Luo, Y.H.; Zhu, W.G.; Qiu, W.T.; Lu, H.H.; Guan, H.Y.; et al. High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid. Opt. Lett. 2018, 43, 4743–4746. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, W.; Zhang, Y.; Liu, G.; Luo, Y.; Dong, J.; Zhong, Y.; Zhu, W.; Yu, J.; Chen, Z. Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer. Nanomaterials 2019, 9, 785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kant, R.; Tabassum, R.; Gupta, B.D. Fiber Optic SPR-Based Uric Acid Biosensor Using Uricase Entrapped Polyacrylamide Gel. IEEE Photonics Technol. Lett. 2016, 28, 2050–2053. [Google Scholar] [CrossRef]
- Usha, S.P.; Shrivastav, A.M.; Gupta, B.D. FO-SPR based dextrose sensor using Ag/ZnO nanorods/GOx for insulinoma detection. Biosens. Bioelectron. 2016, 85, 986–995. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Mishra, S.K.; Gupta, B.D. Fiber optic SPR sensor for the detection of melamine using molecular imprinting. Sens. Actuator B Chem. 2015, 212, 404–410. [Google Scholar] [CrossRef]
- Verma, R.; Gupta, B.D. Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting. Analyst 2013, 138, 7254–7263. [Google Scholar] [CrossRef] [PubMed]
- Shrivastav, A.M.; Usha, S.P.; Gupta, B.D. A localized and propagating SPR, and molecular imprinting based fiber-optic ascorbic acid sensor using an in situ polymerized polyaniline-Ag nanocomposite. Nanotechnology 2016, 27, 345501. [Google Scholar] [CrossRef] [PubMed]
- Shrivastav, A.M.; Usha, S.P.; Gupta, B.D. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting. Biosens. Bioelectron. 2016, 79, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; D’Agostino, G.; Pesavento, M.; Zeni, L. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine. Sens. Actuator B Chem. 2014, 191, 529–536. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Usha, S.P.; Gupta, B.D. Highly sensitive and selective erythromycin nanosensor employing fiber optic SPR/ERY imprinted nanostructure: Application in milk and honey. Biosens. Bioelectron. 2017, 90, 516–524. [Google Scholar] [CrossRef]
- Shi, S.; Wang, L.; Wang, A.; Huang, R.; Ding, L.; Su, R.; Qi, W.; He, Z. Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine-accelerated electroless plating. J. Mater. Chem. C 2016, 4, 7554–7562. [Google Scholar] [CrossRef]
- Verma, R.; Gupta, B.D. Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan. Food Chem. 2015, 166, 568–575. [Google Scholar] [CrossRef]
- Mishra, S.K.; Tripathi, S.N.; Choudhary, V.; Gupta, B.D. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuator B Chem. 2014, 199, 190–200. [Google Scholar] [CrossRef]
- Ma, J.Y.; Liu, T.Y.; Jiang, J.F.; Liu, K.; Wang, S.; Zhang, Z.; Jing, J.Y. Progress in Sensitivity Enhancement for Optical Fibre Surface Plasmon Resonance Sensing. Chin. J. Lasers 2021, 48, 99–112. [Google Scholar]
- Wang, H.R.; Chen, S.J.; Dai, W.Y.; Xie, T.T.; Pan, P.; Luo, J.; Fu, H.Y. Dual-Channel SPR Sensor Based on MSM Fiber for Detection of Glucose Concentration and Temperature. IEEE Photonics Technol. Lett. 2022, 34, 919–922. [Google Scholar] [CrossRef]
- Teng, C.X.; Shao, P.; Li, S.W.; Li, S.; Liu, H.Q.; Deng, H.C.; Chen, M.; Yuan, L.; Deng, S.J. Double-side polished U-shape plastic optical fiber based SPR sensor for the Simultaneous measurement of refractive index and temperature. Opt. Commun. 2022, 525, 128844. [Google Scholar] [CrossRef]
- Lia, X.G.; Gong, P.Q.; Zhao, Q.M.; Zhou, X.; Zhang, Y.A.; Zhao, Y. Plug-in optical fiber SPR biosensor for lung cancer gene detection with temperature and pH compensation. Sens. Actuators B Chem. 2022, 359, 131596. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, P.; Zhu, Z.D.; Liu, L.; Liu, C.L.; Hu, J.X.; Wang, S.F.; Zhang, Y.H. Surface- Plasmon- Resonance-Based Optical-Fiber Micro-Displacement Sensor with Temperature Compensation. Senors 2018, 18, 3210. [Google Scholar] [CrossRef] [Green Version]
- Ankiewicz, A.; Pask, C.; Snyder, A.W. Slowly varying optical fibers. J. Opt. Soc. Am. 1982, 72, 198–203. [Google Scholar] [CrossRef]
- Chang, P.X.; Liu, K.; Jiang, J.F.; Xu, T.H.; Zhang, Z.; Ma, J.Y.; Zhao, Y.H.; Zhang, J.H.; Li, X.B.; Liu, T.G. The temperature responsive mechanism of fiber surface plasmon resonance sensor. Sens. Actuators A 2020, 309, 112022. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Han, B.; Zhang, Y.N.; Liu, Y.X.; Zheng, W.L.; Zhao, Y. Multichannel Fiber Optic SPR Sensors: Realization Methods, Application Status, and Future Prospects. Laser Photonics Rev. 2022, 16, 2200009. [Google Scholar] [CrossRef]
- Yulianti, I.; Putra, N.M.D.; Fianti; Maimanah, S.; Rumiana, H.; Noor, M.Y.M.; Supa’at, A.S.M.; Kurdi, O. Simulation of Mach-Zehnder Interferometer plastic optical fibre for temperature and refractive index measurement. IOP Conf. Ser. Mater. Sci. Eng. 2020, 807, 012029. [Google Scholar] [CrossRef]
- Zhao, R.A.; Lang, T.; Chen, J.; Hu, J. Polarization-maintaining fiber sensor for simultaneous measurement of the temperature and refractive index. Opt. Eng. 2017, 56, 057113. [Google Scholar] [CrossRef]
- Chong, S.S.; Aziz, A.R.; Harun, S.W.; Arof, H. Temperature compensation in determining of Remazol black B concentrations using plastic optical fiber based sensor. Sensors 2014, 14, 15836–15848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Ning, T.; Zhang, C.; Li, J.; Wen, X.-D.; Pei, L.; Gao, X.; Lin, H. Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating. Sens. Actuators A Phys. 2016, 245, 49–53. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.N.; Lv, R.Q. Simultaneous Measurement of Magnetic Field and Temperature Based on Magnetic Fluid-Infiltrated Photonic Crystal Cavity. Trans. Inst. Meas. 2015, 64, 1055–1062. [Google Scholar] [CrossRef]
- Li, H.; Qian, X.; Zheng, W.; Lu, Y.; E, S.; Zhang, Y.N. Theoretical and experimental characterization of a salinity and temperature sensor employing optical fiber surface plasmon resonance (SPR). Instrum. Sci. Technol. 2020, 48, 601–615. [Google Scholar] [CrossRef]
- Alonso-Murias, M.D.C.; Velazquez-Gonzalez, J.S.; Monzon-Hernandez, D. SPR Fiber Tip Sensor for the Simultaneous Measurement of Refractive Index, Temperature, and Level of a Liquid. J. Light. Technol. 2019, 37, 4808–4814. [Google Scholar] [CrossRef]
- Velázquez-González, J.S.; Monzón-Hernández, D.; Martínez-Piñón, F.; Hernández-Romano, I. Highly Sensitive Surface Plasmon Resonance-based Optical Fiber Multi-parameter Sensor. Procedia Eng. 2016, 168, 1249–1252. [Google Scholar] [CrossRef]
- Zeng, J.; Liang, D.; Cao, Z. Applications of optical fiber SPR sensor for measuring of temperature and concentration of liquids. In Proceedings of the 17th International Conference on Optical Fibre Sensors, Bruges, Belgium, 2–3 May 2005. [Google Scholar]
- Yin, Z.; Jing, X.; Zhang, H.; Wang, C.; Liu, C.; Shao, P. Dual-parameter sensor for simultaneously measuring refractive index and temperature based on no-core fiber and SPR effect. Optik 2022, 262, 16932. [Google Scholar] [CrossRef]
- Li, B.; Yan, X.; Zhang, X.; Wang, F.; Li, S.; Suzuki, T.; Ohishi, Y.; Cheng, T. No-core optical fiber sensor based on surface plasmon resonance for glucose solution concentration and temperature measurement. Opt. Express 2021, 29, 12930–12940. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Zhang, Y.; Liu, S. V-shaped micro-structure optical fiber surface plasmon resonance sensor for the simultaneous measurement of the refractive index and temperature. Opt. Lett. 2019, 44, 5093–5096. [Google Scholar] [CrossRef]
- Li, B.; Zhang, F.; Yan, X.; Zhang, X.; Wang, F.; Li, S.; Cheng, T. Numerical Analysis of Dual-Parameter Optical Fiber Sensor with Large Measurement Range Based on Surface Plasmon Resonance. IEEE Sens. J. 2021, 21, 10719–10725. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Zhang, Y.; Liu, S. Side-Polished D-Type Fiber SPR Sensor for RI Sensing with Temperature Compensation. IEEE Sens. J. 2021, 21, 16621–16628. [Google Scholar] [CrossRef]
- Cai, K.J.; Ge, Y.X.; Zhou, J.P. Study on Refractive Index Sensing Based on Double D-Type Surface Plasmon Resonance. Semi. Optoelectron. 2018, 39, 628–633. [Google Scholar]
- Weng, S.; Pei, L.; Liu, C.; Wang, J.; Li, J.; Ning, T. Double-Side Polished Fiber SPR Sensor for Simultaneous Temperature and Refractive Index Measurement. IEEE Photonics Technol. Lett. 2016, 28, 1916–1919. [Google Scholar] [CrossRef]
- Méjard, R.; Griesser, H.J.; Thierry, B. Optical biosensing for label-free cellular studies. TrAC-Trend Anal. Chem. 2014, 53, 178–186. [Google Scholar] [CrossRef]
- Wang, Q.; Jing, J.Y.; Wang, X.Z.; Niu, L.Y.; Zhao, W.M. A D-Shaped Fiber Long-Range Surface Plasmon Resonance Sensor with High Q-Factor and Temperature Self-Compensation. IEEE Trans. Inst. Meas. 2020, 69, 2218–2224. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Yi, D.; Hong, X.; Chen, Y. Plasmonic tapered-fiber interference sensor for simultaneously detecting refractive index and temperature. Opt. Lett. 2021, 46, 6071–6074. [Google Scholar] [CrossRef]
- Tong, R.J.; Wang, Y.; Zhao, K.J.; Zhao, Y. Surface Plasmon Resonance Optical Fiber Sensor for Refractive Index Detection Without Temperature Crosstalk. IEEE Trans. Inst. Meas. 2022, 71, 1–6. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.; Liu, Q.; Peng, W. Temperature-Compensating Fiber-Optic Surface Plasmon Resonance Biosensor. IEEE Photonics Technol. Lett. 2016, 28, 213–216. [Google Scholar] [CrossRef]
- Shi, W.H.; Mu, R.Q.; Zhang, L. Biological Mass Concentration and Temperature Dual Parametric Sensing Based on Photonic Crystal Fiber. Laser Optoelectron. Prog. 2022, 59, 388–393. [Google Scholar]
- Chen, A.; Yu, Z.; Dai, B.; Li, Y. Highly Sensitive Detection of Refractive Index and Temperature Based on Liquid-Filled D-Shape PCF. IEEE Photonics Technol. Lett. 2021, 33, 529–532. [Google Scholar] [CrossRef]
- Zhao, L.; Han, H.; Lian, Y.; Luan, N.; Liu, J. Theoretical analysis of all-solid D-type photonic crystal fiber based plasmonic sensor for refractive index and temperature sensing. Opt. Fiber Technol. 2019, 50, 165–171. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Wang, Q.; Wang, M.; Ding, Y.; Zhu, C.; Cheng, D. Temperature-compensated magnetic field sensor based on surface plasmon resonance and directional resonance coupling in a D-shaped photonic crystal fiber. Optik 2018, 158, 1402–1409. [Google Scholar] [CrossRef]
- Mo, X.; Lv, J.; Liu, Q.; Jiang, X.; Si, G. A Magnetic Field SPR Sensor Based on Temperature Self-Reference. Sensors 2021, 21, 6130. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Chen, H.; Li, J.; Zhang, W.; Wang, M. Surface Plasmon Resonance Induced High Sensitivity Temperature and Refractive Index Sensor Based on Evanescent Field Enhanced Photonic Crystal Fiber. J. Light. Technol. 2020, 38, 919–928. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Wang, M.; Liu, Y.; Fan, X.; Chen, Q.; Wu, B. Simultaneous measurement of refractive index and temperature of seawater based on surface plasmon resonance in a dual D-type photonic crystal fiber. Mater. Res. Express 2021, 8, 085201. [Google Scholar] [CrossRef]
- Li, D.; Pu, S.; Zhao, Y.; Li, Y.; Hao, Z.; Han, Z. Sensing properties of symmetrical side-polished photonic crystal fiber based on surface plasmon resonance. Optik 2020, 224, 165662. [Google Scholar] [CrossRef]
- Liu, H.; Chen, C.; Wang, H.; Zhang, W. Simultaneous measurement of magnetic field and temperature based on surface plasmon resonance in twin-core photonic crystal fiber. Optik 2020, 203, 164007. [Google Scholar] [CrossRef]
- Xiao, G.; Wang, B.; Yang, H.; Ou, Z.; Su, J.; Cheng, J.; Li, H.; Liu, X.; Wangyang, P. Dual-parameter detection with an open-loop dual-core plasmonic optical fiber sensor. Opt. Commun. 2022, 1, 1441–1450. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Wei, S.; Zhu, C.; Tan, C.; Wang, M.; Cheng, D. Simultaneous dual-parameter measurement based on dual-channel surface plasmon resonance in photonic crystal fiber. Optik 2017, 145, 582–588. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Guo, Y.; Zhang, S.; Li, H. Surface plasmon polariton high-sensitivity refractive index sensor based on MMF-MOF-MMF structure. Infrared Phys. Technol. 2021, 114, 103685. [Google Scholar] [CrossRef]
- Gu, S.; Sun, W.; Li, M.; Li, Z.; Nan, X.; Feng, Z.; Deng, M. Simultaneous measurement of magnetic field and temperature based on photonic crystal fiber plasmonic sensor with dual-polarized modes. Optik 2022, 259, 169030. [Google Scholar] [CrossRef]
- Hu, T.; Zhao, Y.; Song, A.N. Fiber optic SPR sensor for refractive index and temperature measurement based on MMF-FBG-MMF structure. Sens. Actuator B Chem. 2016, 237, 521–525. [Google Scholar] [CrossRef]
- Lu, B.; Sun, Y.; Lai, X.; Pu, Z.; Yu, H.; Xu, K.; Li, D. Side-polished fiber SPR sensor with tempetrature self-compensation for continuous glucose monitoring. In Proceedings of the IEEE 29th International Conference on Micro Electro Mechanical Systems, Shanghai, China, 29 February 2016. [Google Scholar]
- Shao, L.Y.; Shevchenko, Y.; Albert, J. Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors. Opt. Express 2010, 18, 11464–11471. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.L.; Kishikawa, H.; Liaw, S.K.; Goto, N.; Liu, W.F. Simultaneous measurement of temperature and refractive index based on an SPR Silicon core fiber sensor with a fused silica grating design. Opt. Quant. Electron. 2022, 54, 10368. [Google Scholar] [CrossRef]
- Li, H.C.; Leng, Y.K.; Liao, Y.C. Tapered Microfiber MZI Biosensor for Highly Sensitive Detection of Staphylococcus Aureus. IEEE Sens. J. 2022, 22, 5531–5539. [Google Scholar] [CrossRef]
- Mishra, G.P.; Kumar, D.; Chaudhary, V.S.; Santosh, K. Design and Sensitivity Improvement of Microstructured-Core Photonic Crystal Fiber Based Sensor for Methane and Hydrogen Fluoride Detection. IEEE Sens. J. 2022, 22, 1265–1272. [Google Scholar] [CrossRef]
- Song, Q.G.; Dai, Y.; Ye, B.; Xiao, X.P.; Huang, C.J.; Mou, C.G.; Sun, Q.Z.; Zhang, L.; Yan, Z.J. Silver-Coated 45° Radiated Tilted Fiber Grating Based Interferometer and Its Sensing Applications. J. Light. Technol. 2022, 40, 1202–1208. [Google Scholar] [CrossRef]
- Shiryaev, V.S.; Sukhanov, M.V.; Velmuzhov, A.P.; Karaksina, E.V.; Kotereva, T.V.; Snopatin, G.E.; Blagin, R.D.; Denker, B.I.; Galagan, B.I.; Koltashev, V.V.; et al. Preparation of high purity Sm3+-doped Ga-Ge-As-Se glass and low-loss fiber. J. Lumin. 2022, 242, 118552. [Google Scholar] [CrossRef]
- Zheng, S.P.; Li, J.; Yu, C.; Zhou, Q.L.; Hu, L.L.; Chen, D.P. Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach. Ceram. Int. 2017, 43, 5837–5841. [Google Scholar] [CrossRef]
- Karaksina, E.V.; Shiryaev, V.S.; Kotereva, T.V.; Churbanov, M.F. Preparation of high-purity Pr(3+) doped Ge–Ga–Sb–Se glasses with intensive middle infrared luminescence. J. Lumin. 2016, 170, 37–41. [Google Scholar] [CrossRef]
- Karaksina, E.V.; Shiryaev, V.S.; Kotereva, T.V.; Velmuzhov, A.P.; Ketkova, L.A.; Snopatin, G.E. Preparation of high-purity Pr 3+ doped Ge-As-Se-In-I glasses for active mid-infrared optics. J. Lumin. 2016, 177, 275–279. [Google Scholar]
- Velmuzhov, A.P.; Sukhanov, M.V.; Shiryaev, V.S.; Plekhovich, A.D. Preparation of high-purity germanium telluride based glasses with low oxygen impurity content. J. Non-Cryst. Solids 2021, 553, 20480. [Google Scholar] [CrossRef]
- He, X.; Zhou, J.; Ma, C.; Li, W.; Yang, J.; Wang, X.; Guan, C.; Zhao, Y.; Yuan, L. Bend Sensor Based on Mach-Zehnder Interferometer Using Single-Mode Fiber with Helical Structure. IEEE Photonics Technol. Lett. 2022, 34, 15–18. [Google Scholar] [CrossRef]
- Liu, D.; Wu, Q.; Mei, C.; Yuan, J.; Xin, X.; Mallik, A.K.; Wei, F.; Han, W.; Kumar, R.; Yu, C.; et al. Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement. J. Light. Technol. 2018, 36, 583–1590. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.Y.; Lee, K.W.; Kim, J.W.; Kim, D.H. Rugate-structured free-standing porous silicon-based fiber-optic sensor for the simultaneous detection of pressure and organic gases. Sens. Actuator B Chem. 2013, 183, 428–433. [Google Scholar] [CrossRef]
- Luo, W.; Liu, B.; Liu, J.; Wu, T.; Liu, Q.; Wang, M.Y.; Wan, S.P.; Yuan, J.; Lu, P.; Wang, D.; et al. Tapered Side-Polished Microfibre Sensor for High Sensitivity hCG Detection. IEEE Sens. J. 2022, 22, 7727–7733. [Google Scholar] [CrossRef]
- Kaur, B.; Kumar, S.; Kaushik, B.K. MXenes-Based Fiber-Optic SPR Sensor for Colorectal Cancer Diagnosis. IEEE Sens. J. 2022, 22, 6661–6668. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, J.; Deng, S.; Yuan, L.; Teng, C. Parallel Polished Plastic Optical Fiber-Based SPR Sensor for Simultaneous Measurement of RI and Temperature. IEEE Trans. Inst. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Shi, J. Relationship between sea surface salinity and ocean circulation and climate change. Sci. Sin. Terrae 2019, 49, 765–777. [Google Scholar] [CrossRef]
- Fang, S.J. Analysis of the ocean environment influences on the performance of the navy equipment. Ship Sci. Technol. 2004, 2, 5–10. [Google Scholar]
- Lin, J. Impact of Marine Environmental Emergencies on Fisheries. Chem. Eng. Des. Commun. 2018, 44, 183–185. [Google Scholar]
- Zhao, Y.; Wu, Q.L.; Zhang, Y.N. Theoretical analysis of high-sensitive seawater temperature and salinity measurement based on C-type micro-structured fiber. Sens. Actuator B Chem. 2018, 258, 822–828. [Google Scholar] [CrossRef]
- Luan, N.; Ding, C.; Yao, J. A Refractive Index and Temperature Sensor Based on Surface Plasmon Resonance in an Exposed-Core Microstructured Optical Fiber. IEEE Photon. J. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Z.; Liu, Y.; Yao, J. SPR sensor based on exposed core micro-structured optical fiber for salinity detection with temperature self-compensation. Opt. Mater.Exp. 2021, 11, 2468–2477. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Q.L.; Zhang, Y.N. Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor. Measurement 2019, 148, 106792. [Google Scholar] [CrossRef]
- Wang, J.K.; Ying, Y.; Hu, N.; Cheng, S.Y. Double D-shaped optical fiber temperature and humidity sensor based on ethanol and polyvinyl alcohol. Optik 2021, 242, 166972. [Google Scholar] [CrossRef]
- Duo, Y.I.; Huo, Z.; Yuzhi, C.; Youfu, G.; Xuejin, L.I.; Xueming, H.; Zhang, X.; Xiao, H. Interferometric fiber optic surface plasmon resonance sensor for temperature and strain measurement. In Proceedings of the 2019 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, Beijng, China, 12 March 2020. [Google Scholar]
- Han, B.; Zhang, Y.-N.; E, S.; Wang, X.; Yang, D.; Wang, T.; Lu, K.; Wang, F. Simultaneous measurement of temperature and strain based on dual SPR effect in PCF. Opt. Laser Technol. 2019, 113, 46–51. [Google Scholar] [CrossRef]
- Su, Y.; Wei, Y.; Zhang, Y.; Liu, C.; Nie, X.; Zhu, Z.; Liu, L. Surface-Plasmon-Resonance-Based Optical Fiber Curvature Sensor with Temperature Compensation by Means of Dual Modulation Method. Sensors 2018, 18, 2608. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, J.; Li, H.; Xu, M.; Li, J.; Jing, C.; Ding, L.; Gao, Y.; Zhou, A. An ultra-sensitive gas pressure sensor based on tapered fiber coated with PDMS film working at TAP. Opt. Laser Technol. 2022, 151, 107998. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Siyu, E.; Tao, B.; Wu, Q.; Han, B. Reflective SPR Sensor for Simultaneous Measurement of Nitrate Concentration and Temperature. IEEE Trans. Inst. Meas. 2019, 68, 4566–4574. [Google Scholar] [CrossRef]
- Gong, P.; Wang, Y.; Zhou, X.; Wang, S.; Zhang, Y.; Zhao, Y.; Nguyen, L.V.; Ebendorff-Heidepriem, H.; Peng, L.; Warren-Smith, S.C.; et al. In Situ Temperature-Compensated DNA Hybridization Detection Using a Dual-Channel Optical Fiber Sensor. Anal. Chem. 2021, 93, 10561–10567. [Google Scholar] [CrossRef]
- Gonzalez-Valencia, E.; Villar, I.D.; Torres, P. Novel Bloch wave excitation platform based on few-layer photonic crystal deposited on D-shaped optical fiber. Nat. Portf. 2021, 11, 11266. [Google Scholar] [CrossRef]
- Tang, Y.X.; Zhang, X.; Zhu, X.S.; Shi, Y.W. One-Dimensional Photonic Crystal Inner coated Hollow fiber based on Bloch Surface Wave with Ultra-High Figure of Merit. IEEE Photonics J. 2020, 13, 6800110. [Google Scholar] [CrossRef]
Methods of TSC (a)-SPR | Advantages | Disadvantages | Typical Performance Parameters | Ref. | ||
---|---|---|---|---|---|---|
Sensitivity | Dynamic Range | |||||
QF (b)-SPR | Cylindrical structure | Easy to manufacture and low cost | Loss of some sensing performance | 2664.54 nm/RIU | 1.346–1.388 | [34] |
V-shaped structure | Narrow full width at half maximum and good stability | Complex preparation process | 3376 nm/RIU | 1.333–1.385 | [38] | |
D-shaped structure | High sensitivity and large-scale production | fragile structure | 2694.3 nm/RIU 5850 nm/RIU 12530 nm/RIU | 1.33–1.38 1.38–1.41 1.41–1.44 | [39] | |
Interference and SPR hybrid structure | Easy to manufacture and ability to compensate for the interference of environmental factors | Complex measurement system | 2021.07 nm/RIU | 1.333–1.338 | [45] | |
PCF-SPR | single D-shaped structure | high sensitivity and the ability to detect biochemical reaction | Complex measurement system | 10,300 nm/RIU | 1.41–1.42 | [50] |
Double D-shaped and double core structure | applicability to a variety of SPR sensing structures and multi-parameter sensing | Complex measurement system | 1371 nm/RIU | 1.33–1.34 | [54] | |
Other structures | good mechanical strength and reproducibility | narrow application range | 3223 nm/RIU | 1.3328–1.339 | [59] | |
Fiber Grating Structure | High SNR, good sensor mechanical strength | low sensitivity | 571.5 nm/RIU | 1.332–1.338 | [63] | |
POF-SPR | Easy preparation process | low SNR and narrow–scale production | 1174 nm/RIU | 1.335–1.37 | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Wang, F.; Han, Z.; Cheng, P.; Ding, Z. Research Advances on Fiber-Optic SPR Sensors with Temperature Self-Compensation. Sensors 2023, 23, 644. https://doi.org/10.3390/s23020644
Zhao H, Wang F, Han Z, Cheng P, Ding Z. Research Advances on Fiber-Optic SPR Sensors with Temperature Self-Compensation. Sensors. 2023; 23(2):644. https://doi.org/10.3390/s23020644
Chicago/Turabian StyleZhao, Hongxia, Feng Wang, Zhaojia Han, Peihong Cheng, and Zhiqun Ding. 2023. "Research Advances on Fiber-Optic SPR Sensors with Temperature Self-Compensation" Sensors 23, no. 2: 644. https://doi.org/10.3390/s23020644
APA StyleZhao, H., Wang, F., Han, Z., Cheng, P., & Ding, Z. (2023). Research Advances on Fiber-Optic SPR Sensors with Temperature Self-Compensation. Sensors, 23(2), 644. https://doi.org/10.3390/s23020644