LPWAN Key Exchange: A Centralised Lightweight Approach
Abstract
:1. Introduction
2. Related Work
3. Proposed Key Exchange Mechanism
3.1. The BYka Scheme
- S: Public key seed value
- V: Public key; m × 1 column vector
- R: Set of integers for forming pairwise key between two nodes
- M: Master key, secret symmetric m × m matrix belongs to Server
- p: Prime modulus for key operation
- n: Number of public keys assigned to each node
- N: Number of master keys
- q: Prime modulus for public keys
- -
- Multiplying elements of R.
- -
- Sorting the set elements of R.
- -
- Counting of occurrence of an integer in R.
3.2. The Session Key Extension to BYka
- Infrastructure setup for the Server:
- The server stores the master key M;
- Infrastructure setup for the Node:
3.3. Features of the Extended BYka Scheme
4. Experimentation and Analysis
4.1. Correctness of The Key Exchange Mechanism
4.2. Security Analysis
4.3. Computational Analysis
4.4. Simulation Parameters
4.5. Comparison with Existing Session Key Mechanisms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Airehrour, D.; Gutierrez, J.; Ray, S.K. Secure routing for internet of things: A survey. J. Netw. Comput. Appl. 2016, 66, 198–213. [Google Scholar] [CrossRef]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of lpwan technologies for large-scale iot deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Sanchez-Iborra, R.; Cano, M.D. State of the art in lpwan solutions for industrial iot services. Sensors 2016, 16, 708. [Google Scholar] [CrossRef]
- Sornin, N.; Luis, M. T.E.T.K.O.: Lorawan™ 1.1 Specification. 2017. Available online: https://lora-alliance.org/sites/default/files/2018-04/lorawantmspecification-v1.1.pdf (accessed on 12 February 2022).
- Silva, J.d.C.; Rodrigues, J.J.P.C.; Alberti, A.M.; Solic, P.; Aquino, A.L.L. Lorawan x2014; A low power wan protocol for Internet of things: A review and opportunities. In Proceedings of the 2017 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech), Split, Croatia, 12–14 July 2017; pp. 1–6. [Google Scholar]
- Vangelista, L.; Zanella, A.; Zorzi, M. Long-range iot technologies: The dawn of lora™. In Future Access Enablers for Ubiquitous and Intelligent Infrastructures; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 51–58. [Google Scholar]
- Pathak, G.; Gutierrez, J.; Rehman, S.U. Security in low powered wide area networks: Opportunities for software defined network-supported solutions. Electronics 2020, 9, 1195. [Google Scholar] [CrossRef]
- Chacko, S.; Job, D. Security mechanisms and vulnerabilities in lpwan. Mater. Sci. Eng. Conf. Ser. 2018, 396, 012027. [Google Scholar] [CrossRef]
- Butun, I.; Pereira, N.; Gidlund, M. Security risk analysis of lorawan and future directions. Future Internet 2019, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Karampatzakis, E.; Doerr, C.; Kuipers, F. Security vulnerabilities in LoRaWAN. In Proceedings of the 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI), Orlando, FL, USA, 17–20 April 2018; pp. 129–140. [Google Scholar]
- Ruotsalainen, H.; Zhang, J.; Grebeniuk, S. Experimental investigation on wireless key generation for low-power wide-area networks. IEEE Internet Things J. 2019, 7, 1745–1755. [Google Scholar] [CrossRef]
- Dönmez, T.C.; Nigussie, E. Security of lorawan v1. 1 in backward compatibility scenarios. Procedia Comput. Sci. 2018, 134, 51–58. [Google Scholar] [CrossRef]
- Zhang, J.; Duong, T.Q.; Marshall, A.; Woods, R. Key generation from wireless channels: A review. IEEE Access 2016, 4, 614–626. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Rajendran, S.; Sun, Z.; Woods, R.; Hanzo, L. Physical layer security for the Internet of things: Authentication and key generation. IEEE Wirel. Commun. 2019, 26, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Wang, J. An enhanced key management scheme for lorawan. Cryptography 2018, 2, 34. [Google Scholar] [CrossRef] [Green Version]
- Selander, G.; Mattsson, J.; Palombini, F. Ephemeral Diffie-Hellman over COSE (EDHOC). 2019. Available online: https://tools.ietf.org/id/draft-ietf-lake-edhoc-01.html (accessed on 15 February 2022).
- Kaufman, C. Internet Key Exchange (Ikev2) Protocol; Report, RFC 4306; IETF, December 2005.
- Rescorla, E.; Modadugu, N. Rfc 6347: Datagram transport layer security version 1.2. Internet Eng. Task Force 2012, 13, 101. [Google Scholar]
- Noura, H.N.; Melki, R.; Chehab, A.; Hernandez Fernandez, J. Efficient and secure message authentication algorithm at the physical layer. Wirel. Netw. 2020. [Google Scholar] [CrossRef]
- Alshahrani, M.; Traore, I.; Woungang, I. Anonymous mutual iot interdevice authentication and key agreement scheme based on the zigbee technique. Internet Things 2019, 7, 100061. [Google Scholar] [CrossRef]
- Kim, J.; Song, J. A dual key-based activation scheme for secure lorawan. Wirel. Commun. Mob. Comput. 2017, 2017, 6590713. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, A.; Lee, S.J.; Peker, Y.K. Physical unclonable function and hashing are all you need to mutually authenticate iot devices. Sensors 2020, 20, 4361. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Heidemann, J. Medium access control in wireless sensor networks. In Wireless Sensor Networks; Springer: Boston, MA, USA, 2004; pp. 73–91. [Google Scholar]
- Yang, M.L. An Authenticated Key Agreement Scheme for Sensor Networks. Ph.D. Thesis, Auckland University of Technology, Auckland, New Zealand, 2014. [Google Scholar]
- Blom, R. An optimal class of symmetric key generation systems. In Proceedings of the EUROCRYPT 84 Workshop on Advances in Cryptology: Theory and Application of Cryptographic Techniques, Paris, France, 9–11 April 1984; pp. 335–338. [Google Scholar]
- Fontes, R.R.; Afzal, S.; Brito, S.H.; Santos, M.A.; Rothenberg, C.E. Mininet-wifi: Emulating software-defined wireless networks. In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM), Barcelona, Spain, 9–13 November 2015; pp. 384–389. [Google Scholar]
- Boyd, C.; Mao, W. On a limitation of BAN logic. In Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques, Lofthus, Norway, 23–27 May 1993; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Cremers, C.J. The scyther tool: Verification, falsification, and analysis of security protocols. In Proceedings of the International Conference on Computer Aided Verification, Princeton, NJ, USA, 7–14 July 2008; pp. 414–418. [Google Scholar]
- McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. Openflow: Enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [Google Scholar] [CrossRef]
- Jens-Peter, K.; Sunar, B. Energy Comparison of AES and SHA-1 for Ubiquitous Computing; International Conference on Embedded and Ubiquitous Computing; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Chaudhari, B.S.; Zennaro, M.; Borkar, S. LPWAN technologies: Emerging application characteristics, requirements, and design considerations. Future Internet 2020, 12, 46. [Google Scholar] [CrossRef] [Green Version]
- Koon, J. Lorawan empowers very low-power, wireless applications. Tech Idea Res. 2020, 1, 123. [Google Scholar]
Claim | Status | Attack Patterns |
---|---|---|
Network Entity: Server | ||
Alive | OK Verified | No Attacks |
Weakagree | OK Verified | No Attacks |
Niagree | OK Verified | No Attacks |
Nisynch | OK Verified | No Attacks |
SKR(Rd)k(Dev, Srv) | OK Verified | No Attacks |
Network Entity: End Node | ||
Alive | OK Verified | No Attacks |
Weakagree | OK Verified | No Attacks |
Niagree | OK Verified | No Attacks |
Nisynch | OK Verified | No Attacks |
SKR(Rd)k(Dev, Srv) | OK Verified | No Attacks |
Parameters | Values |
---|---|
Simulation Time | 24 h |
Initial Node Energy | 10,000 J |
Supply Voltage | 3.3 V |
Current for Packet Transmission | 0.028 A |
Current for Packet Reception | 0.0112 A |
Number of Gateways | 1 |
Number of Nodes | 1 |
Data Rate | 12 Packets/Minute |
Data Rate | LoRaWAN Energy Consumption with Session Key Mechanism (J) | LoRaWAN Energy Consumption without Session Key Mechanism (J) |
---|---|---|
1 packet/minute | 692.16 J | 272.122 |
1 packet/30 min | 35.4716 | 21.4703 |
1 packet/hour | 24.1464 | 17.1457 |
1 packet/6 h | 14.6801 | 13.5133 |
1 packet/12 h | 13.6992 | 13.1158 |
1 packet/24 h | 13.1527 | 12.8611 |
1 packet/7 days | 10.992 | 10.9531 |
1 packet/15 days | 10.6205 | 10.6001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathak, G.; Gutierrez, J.; Ghobakhlou, A.; Rehman, S.U. LPWAN Key Exchange: A Centralised Lightweight Approach. Sensors 2022, 22, 5065. https://doi.org/10.3390/s22135065
Pathak G, Gutierrez J, Ghobakhlou A, Rehman SU. LPWAN Key Exchange: A Centralised Lightweight Approach. Sensors. 2022; 22(13):5065. https://doi.org/10.3390/s22135065
Chicago/Turabian StylePathak, Gaurav, Jairo Gutierrez, Akbar Ghobakhlou, and Saeed Ur Rehman. 2022. "LPWAN Key Exchange: A Centralised Lightweight Approach" Sensors 22, no. 13: 5065. https://doi.org/10.3390/s22135065
APA StylePathak, G., Gutierrez, J., Ghobakhlou, A., & Rehman, S. U. (2022). LPWAN Key Exchange: A Centralised Lightweight Approach. Sensors, 22(13), 5065. https://doi.org/10.3390/s22135065