Application of Deep Learning Models for Automated Identification of Parkinson’s Disease: A Review (2011–2021)
Abstract
:1. Introduction
1.1. Background
1.2. Convolutional Neural Network (CNN)
1.3. Long Short-Term Memory (LSTM)
2. Materials and Methods
3. Results
3.1. Brain Analysis
3.2. Motor Symptoms
4. Discussion
4.1. Result Summary
- Deep learning models proposed by various studies have achieved a high predictive accuracy for the diagnosis of PD (Figure 13).
- About 57% of the deep learning studies for automated PD detection had proposed using the CNN model (Figure 14).
- CNN models have demonstrated to have high prediction accuracy for image classification such as brain imaging (SPECT, PET, and MRI), and handwriting recognition.
- Gait analysis, on the other hand, seems to perform better with either hybrid model (CNN-LSTM), DNN, or LSTM model. However, more research is required to determine the best-performing model.
- However clinical trials are required to prove the suitability of the proposed deep learning model for each modality.
4.2. Challenges Faced by CAD Tools in Healthcare Adoption
- Lack of standards
- Poor interpretability
- Psychological barriers
4.3. Solutions to Promote Adoption of CAD
4.4. Solutions to Promote Adoption of CAD
4.5. Limitation of This Study
- Deep learning studies for each modality (MRI, EEG, speech, etc.,), may use different datasets to train their model. For example, studies interested in MRI may use a private dataset instead of the public dataset, PPMI. Hence, it could become rather difficult to compare the performance of two deep learning models that do not train with the same dataset.
- There is a potential lack of studies for ultrasound imaging, small movement-related tests, and multi-model analysis which involves more than one modality. This makes it difficult to determine the best-performing model for these three categories.
- The wide variety of deep learning models proposed for gait analysis also makes it challenging to determine the best performing model, hence, it is difficult to decide between the top three best performing models: CNN-LSTM, DNN, and LSTM.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Author | Input Feature | Approach | Dataset | Accuracy (%) |
---|---|---|---|---|---|
MRI | |||||
2019 | Xiao et al. [85] | Quantitative susceptibility mapping (QSM) images | CNN | 87 PD; 53 HC (private) | 89.0 |
2021 | Yasaka et al. [86] | radial kurtosis (RK) Connectrome matrix | CNN | 115 PD; 115 HC (private) | 81.0 |
2020 | Chakraborty et al. [42] | Normalized MRI images | CNN | 203 PD; 203 HC (PPMI) | 95.3 |
2020 | Tremblay et al. [87] | T2-weighted imaging | CNN | 15 PD; 15 HC (private) | 88.3 |
2019 | Shinde et al. [88] | a boxed region around the brain-stem on the axial slices of the NMS-MRI as input | CNN (ResNet50) | 45 PD; 35 HC (private) | 80.0 |
PET/CT | |||||
2021 | Piccardo et al. [41] | [18F]DOPA PET/CT images | CNN (3D) | 43 PD; 55 HC (private) | 93.0 |
2019 | Shen et al. [89] | laconic representation of PET images | Group Lasso Sparse Deep Belief Network (GLS-DBN) | 125 PD; 225 HC (private) | 90.0 |
2019 | Dai et al. [90] | Enhanced Pet images | CNN (U-net) | 214 PD; 127 HC (PPMI) | 84.2 |
SPECT/DaTscan | |||||
2015 | Hirschauer et al. [91] | Inputs from all 8 diagnostic test in database | Enhanced probabilistic neural network (EPNN) | 189 PD; 415 HC (PPMI) | 98.6 |
2020 | Ozsahin et al. [40] | Binarized images | back propagation neural network (BPNN) | 1.334 PD; 212 HC (PPMI) | 99.6 |
2017 | Choi et al. [37] | Normalized SPECT images | CNN | 431 PD; 193 HC (combination of 2 database) | 98.8 |
2020 | Magesh et al. [92] | Normalized SPECT images | CNN (VGG16) | 430 PD; 212 HC (PPMI) | 95.2 |
2020 | Chien et al. [93] | segmented striatal region images | CNN | 234 PD; 145 HC (private) | 86.0 |
2020 | Hsu et al. [94] | Grayscale + colour SPECT images | CNN (VGG) | 196 PD; 6 HC (private) | 85.0 |
2019 | Ortiz et al. [95] | Voxel feature extracted via isosurfaces | CNN (3D) | 158 PD; 111 HC (PPMI) | 95.1 |
2018 | Martinez-Murcia at al. [96] | Normalized DaTSCAN images | CNN (ALEXNET) | 448 PD; 194 HC (PPMI) | 94.1 |
Ultrasound | |||||
2018 | Shen et al. [43] | 73 features extracted from Transcranial sonography (TCS) image | MEKM-BLS | 76 PD; 77HC (private) | 78.4 |
EEG | |||||
2020 | Xu et al. [49] | end-to-end EEG signals | pooling-based deep recurrent neural network (PDRNN) | 10 PD; 10 HC (private) | 88.6 |
2021 | Lee et al. [51] | spatiotemporal features of EEG signals | CRNN | - | 99.2 |
2021 | Loh et al. [25] | Spectrograms images | CNN | 15 PD; 16 HC (public) | 99.5 |
2021 | Khare et al. [47] | smoothed pseudo-Wigner Ville distribution | CNN | 15 PD; 16 HC (public) | 100 |
2018 | Oh et al. [48] | end-to-end EEG signals | 13-layer 1D-CNN | 20 PD; 20 HC (private) | 88.3 |
2020 | Shah et al. [50] | - | DNN | - | 99.2 |
Year | Author | Input Feature | Approach | Dataset | Accuracy (%) |
---|---|---|---|---|---|
Gait | |||||
2019 | Xia et al. [53] | Multi-points Vertical Ground Reaction Force (VGRF) time series | CNN-LSTM | 93 PD; 73 HC (public) | 99.1 |
2016 | Nancy Jane et al. [97] | Temporal sequence of walking pattern | Q-BTDNN | 93 PD; 73 HC (public) | 93.1 [Ga]91.7 [Si]89.7 [Ju] |
2020 | Som et al. [98] | Reduced feature via PCA | Autoencoder | 18 PD; 16 HC (public) | 73.8 |
2020 | Zhang et al. [99] | Normalization and Data Augmentation | CNN | 656 PD; 2148 HC (public) | 86.0 |
2020 | Maachi et al. [58] | 18 1D-signals | DNN | 93 PD; 73 HC (public) | 98.7 |
2021 | Balaji et al. [59] | the gait kinematic features | LSTM | - | 98.6 |
2020 | Yurdakul et al. [100] | NR-LBP | ANN | 93 PD; 73 HC (public) | 98.3 |
2018 | Zhao et al. [54] | 19 features | CNN-LSTM | 93PD; 73 HC (public) | 98.0 |
2016 | Zeng et al. [101] | 19 features | RBF-NN | 93PD; 73 HC (public) | 96.4 |
2020 | Alharthi et al. [102] | ground reaction force | CNN | 93 PD; 73 HC (public) | 95.5 |
2020 | Butt et al. [103] | kinematic features | LSTM | 64 PD; 50 HC (private) | 82.4 |
Handwriting | |||||
2021 | Folador et al. [104] | histograms of oriented gradients (HOG) | CNN | 20 PD; 20 HC | 83.1 |
2019 | Yang et al. [105] | key parameters deviation (cm) and accumulation angle (rad) | GRNN | 21 PD; 24 HC | 98.9 |
2020 | Canturk et al. [106] | Fuzzy recurrence plot (FRP) | CNN | 25 PD; 15 HC | 94.0 |
2019 | Gil-Martín et al. [107] | CNN based features | CNN | 62 PD; 15 HC | 96.5 |
2019 | Naseer et al. [108] | CNN based features | CNN | 37 PD; 38 HC | 98.3 |
2021 | Gazda et al. [109] | handwriting images | CNN | - | 94.7 |
2020 | Kamran et al. [65] | CNN based features | CNN | PaHaW dataset[38/37], HandPD dataset[18/74], NewHandPD dataset[35/31] Parkinsons Drawing | 99.2 |
2018 | Pereira et al. [110] | CNN based features | CNN | 74 PC; 18 HC | 95.0 |
2018 | Afonso et al. [111] | recurrence plots to map the signals onto the image domain | CNN | 14 PD; 21 HC | 87.0 |
2019 | Ribeiro et al. [112] | Bags of Sampling | RNN | 14 PD; 21 HC | 97.0 |
2019 | Diaz et al. [113] | Generate enhanced images | CNN | 37 PD; 38 HC | 86.67 |
2021 | Diaz et al. [114] | Kinematic and pressure features | CNN-RNN | PaHaW dataset[38/37], NewHandPD dataset[35/31] | 90.0 |
2020 | Nomm et al. [115] | Image of a drawn spiral enhanced by the velocity and pressure parameters | CNN | 17 PD; 17 HC | 93 |
Movement | |||||
2018 | Prince et al. [71] | touch-screen and accelerometer waveforms | CNN | 949 PD; 866 HC | 62.1 |
2017 | Jones et al. [70] | Temporal Manometric and videofluoroscopic data | ANN | 31 PD; 31 HC | 82.3 |
Speech | |||||
2018 | Putri et al. [76] | Various voice measurements | ANN | 15 PD; 8 HC | 94.4 |
2019 | Ali et al. [75] | dimensionality reduction of all 26 features by LDA | GONN | 20 PD; 20 HC (Sakar, 2013) | 100 |
2015 | Peker et al. [116] | 12 features selected by minimum redundancy maximum relevance (mRMR) attribute selection algorithm | CVANN | 23 PD; 8 HC (Little, 2007) | 98.1 |
2019 | Wodzinski et al. [117] | Spectrograms images | CNN | 50 PD; 50 HC (PC-GITA) | 91.7 |
2016 | Avci et al. [118] | 22 biomedical voice measurements | ELM | 23 PD; 8 HC (Little, 2007) | 96.8 |
2017 | Gómez-Vilda et al. [119] | absolute kinematic velocity (AKV) distribution | RLSFN | 53 PD; 26 HC (Male) 38 PD; 25 HC (Female) | 99.4 |
2020 | Nagasubramanian et al. [73] | All 26 features | CNN | 20 PD; 20 HC (Sakar, 2013) | 99.5 |
2020 | Xu et al. [120] | Spectrograms images | CNN | 20 PD; 20 HC (Sakar, 2013) | 91.2 |
2021 | Karaman et al. [121] | CNN based features | CNN | mPower Voice database | 91.17 |
2011 | Åström et al. [122] | 10 vocal features | DNN | 23 PD; 8 HC (Little, 2007) | 91.2 |
2021 | Narendra et al. [123] | raw speech and voice source waveforms | CNN | 50 PD; 50 HC (PC-GITA) | 68.6 |
2021 | Goyal et al. [74] | A combination of Resonance based Sparse Signal Decomposition (RSSD) + Time-Frequency (T-F) algorithm | CNN | 16 PD; 21 HC and 20 HC | 99.4 |
EMG | |||||
2018 | Putri et al. [76] | 12 EMG features | ANN | 15 PD; 8 HC | 71.0 |
Mixture of inputs | |||||
2018 | Vasquez-Correa et al. [77] | Spectrograms images | CNN | 44 PD; 40 HC | 97.6 |
2017 | Oung et al. [78] | Empirical Wavelet Transform Based Features | ELM | 50 PD; 15 HC | 95.93 |
References
- Politis, M.; Wu, K.; Molloy, S.; Bain, P.G.; Chaudhuri, K.R.; Piccini, P. Parkinson’s disease symptoms: The patient’s perspective. Mov. Disord. 2010, 25, 1646–1651. [Google Scholar] [CrossRef] [PubMed]
- Balestrino, R.; Schapira, A.H.V. Parkinson disease. Eur. J. Neurol. 2020, 27, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.; Acharya, U.R.; Hagiwara, Y.; Dadmehr, N.; Adeli, H. Parkinson’s disease: Cause factors, measurable indicators, and early diagnosis. Comput. Biol. Med. 2018, 102, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, E.R.; Elbaz, A.; Nichols, E.; Abd-Allah, F.; Abdelalim, A.; Adsuar, J.C.; Ansha, M.G.; Brayne, C.; Choi, J.-Y.J.; Collado-Mateo, D.; et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 939–953. [Google Scholar] [CrossRef] [Green Version]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef]
- Szász, J.A.; Orbán-Kis, K.; Constantin, V.A.; Péter, C.; Bíró, I.; Mihály, I.; Szegedi, K.; Balla, A.; Szatmári, S. Therapeutic strategies in the early stages of Parkinson’s disease: A cross-sectional evaluation of 15 years’ experience with a large cohort of Romanian patients. Neuropsychiatr. Dis. Treat. 2019, 15, 831–838. [Google Scholar] [CrossRef] [Green Version]
- Dangouloff, T.; Servais, L. Clinical evidence supporting early treatment of patients with spinal muscular atrophy: Current perspectives. Ther. Clin. Risk Manag. 2019, 15, 1153–1161. [Google Scholar] [CrossRef] [Green Version]
- Berardelli, A.; Wenning, G.K.; Antonini, A.; Berg, D.; Bloem, B.R.; Bonifati, V.; Brooks, D.; Burn, D.J.; Colosimo, C.; Fanciulli, A.; et al. EFNS/MDS-ES recommendations for the diagnosis of Parkinson’s disease. Eur. J. Neurol. 2013, 20, 16–34. [Google Scholar] [CrossRef]
- Rizzo, G.; Copetti, M.; Arcuti, S.; Martino, D.; Fontana, A.; Logroscino, G. Accuracy of clinical diagnosis of Parkinson disease. Neurology 2016, 86, 566–576. [Google Scholar] [CrossRef]
- Burton, A. How do we fix the shortage of neurologists? Lancet Neurol. 2018, 17, 502–503. [Google Scholar] [CrossRef] [Green Version]
- Segato, A.; Marzullo, A.; Calimeri, F.; De Momi, E. Artificial intelligence for brain diseases: A systematic review. APL Bioeng. 2020, 4, 041503. [Google Scholar] [CrossRef]
- Raghavendra, U.; Acharya, U.R.; Adeli, H. Artificial Intelligence techniques for automated diagnosis of neurological disorders. Eur. Neurol. 2019, 82, 41–64. [Google Scholar] [CrossRef]
- Yuvaraj, R.; Murugappan, M.; Acharya, U.R.; Adeli, H.; Ibrahim, N.M.; Mesquita, E. Brain functional connectivity patterns for emotional state classification in Parkinson’s disease patients without dementia. Behav. Brain Res. 2016, 298, 248–260. [Google Scholar] [CrossRef]
- Tuncer, T.; Dogan, S.; Acharya, U.R. Automated detection of Parkinson’s disease using minimum average maximum tree and singular value decomposition method with vowels. Biocybern. Biomed. Eng. 2020, 40, 211–220. [Google Scholar] [CrossRef]
- Faust, O.; Razaghi, H.; Barika, R.; Ciaccio, E.J.; Acharya, U.R. A review of automated sleep stage scoring based on physiological signals for the new millennia. Comput. Methods Programs Biomed. 2019, 176, 81–91. [Google Scholar] [CrossRef]
- Loh, H.W.; Ooi, C.P.; Vicnesh, J.; Oh, S.L.; Faust, O.; Gertych, A.; Acharya, U.R. Automated detection of sleep stages using deep learning techniques: A systematic review of the last decade (2010–2020). Appl. Sci. 2020, 10, 8963. [Google Scholar] [CrossRef]
- Khare, S.K.; Bajaj, V.; Acharya, U.R. Detection of Parkinson’s disease using automated tunable Q wavelet transform technique with EEG signals. Biocybern. Biomed. Eng. 2021, 41, 679–689. [Google Scholar] [CrossRef]
- Bhurane, A.A.; Dhok, S.; Sharma, M.; Yuvaraj, R.; Murugappan, M.; Acharya, U.R. Diagnosis of Parkinson’s disease from electroencephalography signals using linear and self-similarity features. Expert Syst. 2019, e12472. [Google Scholar] [CrossRef]
- Yuvaraj, R.; Rajendra Acharya, U.R.; Hagiwara, Y. A novel Parkinson’s disease diagnosis index using higher-order spectra features in EEG signals. Neural Comput. Appl. 2018, 30, 1225–1235. [Google Scholar] [CrossRef]
- Mirza, B.; Wang, W.; Wang, J.; Choi, H.; Chung, N.C.; Ping, P. Machine learning and integrative analysis of biomedical big data. Genes 2019, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.; Fenner, J. The challenge of clinical adoption—The insurmountable obstacle that will stop machine learning? BJR Open 2019, 1, 20180017. [Google Scholar] [CrossRef]
- Varghese, J. Artificial intelligence in medicine: Chances and challenges for wide clinical adoption. Visc. Med. 2020, 36, 443–449. [Google Scholar] [CrossRef]
- Lee, J.-G.; Jun, S.; Cho, Y.-W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep learning in medical imaging: General overview. Korean J. Radiol. 2017, 18, 570. [Google Scholar] [CrossRef] [Green Version]
- Balderas Silva, D.; Ponce Cruz, P.; Molina Gutierrez, A. Are the long–short term memory and convolution neural networks really based on biological systems? ICT Express 2018, 4, 100–106. [Google Scholar] [CrossRef]
- Loh, H.; Ooi, C.; Palmer, E.; Barua, P.; Dogan, S.; Tuncer, T.; Baygin, M.; Acharya, U. GaborPDNet: Gabor transformation and deep neural network for Parkinson’s disease detection using EEG signals. Electronics 2021, 10, 1740. [Google Scholar] [CrossRef]
- Sarvamangala, D.R.; Kulkarni, R.V. Convolutional neural networks in medical image understanding: A survey. Evol. Intell. 2021, 1–22. [Google Scholar] [CrossRef]
- Fan, J.; Xu, W.; Wu, Y.; Gong, Y. Human tracking using convolutional neural networks. IEEE Trans. Neural Netw. 2010, 21, 1610–1623. [Google Scholar] [CrossRef]
- Lu, J.; Liong, V.E.; Wang, G.; Moulin, P. Joint feature learning for face recognition. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1371–1383. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, Y.; Chen, S.; Bo, Y.; Li, W.; Tian, W.; Jun, G. A mixed deep recurrent neural network for MEMS gyroscope noise suppressing. Electronics 2019, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef] [PubMed]
- Coto-Jiménez, M. Improving post-filtering of artificial speech using pre-trained LSTM neural networks. Biomimetics 2019, 4, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graves, A.; Liwicki, M.; Fernandez, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A Novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 855–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabipour, M.; Nayyeri, P.; Jabani, H.; Mosavi, A.; Salwana, E.; Shahab, S. Deep learning for stock market prediction. Entropy 2020, 22, 840. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Wang, B.; Zhou, C. Forecasting stock prices with long-short term memory neural network based on attention mechanism. PLoS ONE 2020, 15, e0227222. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Ha, S.; Im, H.J.; Paek, S.H.; Lee, D.S. Refining diagnosis of Parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging. NeuroImage Clin. 2017, 16, 586–594. [Google Scholar] [CrossRef]
- Garibotto, V.; Montandon, M.L.; Viaud, C.T.; Allaoua, M.; Assal, F.; Burkhard, P.R.; Ratib, O.; Zaidi, H. Regions of interest–based discriminant analysis of DaTSCAN SPECT and FDG-PET for the classification of dementia. Clin. Nucl. Med. 2013, 38, e112–e117. [Google Scholar] [CrossRef]
- Meyer, P.T.; Frings, L.; Rücker, G.; Hellwig, S. 18 F-FDG PET in Parkinsonism: Differential diagnosis and evaluation of cognitive impairment. J. Nucl. Med. 2017, 58, 1888–1898. [Google Scholar] [CrossRef] [Green Version]
- Ozsahin, I.; Sekeroglu, B.; Pwavodi, P.C.; Mok, G.S.P. High-accuracy automated diagnosis of Parkinson’s disease. Curr. Med. Imaging Former. Curr. Med. Imaging Rev. 2020, 16, 688–694. [Google Scholar] [CrossRef]
- Piccardo, A.; Cappuccio, R.; Bottoni, G.; Cecchin, D.; Mazzella, L.; Cirone, A.; Righi, S.; Ugolini, M.; Bianchi, P.; Bertolaccini, P.; et al. The role of the deep convolutional neural network as an aid to interpreting brain [18F]DOPA PET/CT in the diagnosis of Parkinson’s disease. Eur. Radiol. 2021, 31, 7003–7011. [Google Scholar] [CrossRef]
- Chakraborty, S.; Aich, S.; Kim, H.-C. Detection of Parkinson’s disease from 3T T1 weighted MRI scans using 3D convolutional neural network. Diagnostics 2020, 10, 402. [Google Scholar] [CrossRef]
- Shen, L.; Shi, J.; Gong, B.; Zhang, Y.; Dong, Y.; Zhang, Q.; An, H. Multiple empirical kernel mapping based broad learning system for classification of Parkinson’s disease with transcranial sonography. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 3132–3135. [Google Scholar] [CrossRef]
- Mehnert, S.; Reuter, I.; Schepp, K.; Maaser, P.; Stolz, E.; Kaps, M. Transcranial sonography for diagnosis of Parkinson’s disease. BMC Neurol. 2010, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Barua, P.D.; Dogan, S.; Tuncer, T.; Baygin, M.; Acharya, U.R. Novel automated PD detection system using aspirin pattern with EEG signals. Comput. Biol. Med. 2021, 137, 104841. [Google Scholar] [CrossRef]
- Soikkeli, R.; Partanen, J.; Soininen, H.; Pääkkönen, A.; Riekkinen, P. Slowing of EEG in Parkinson’s disease. Electroencephalogr. Clin. Neurophysiol. 1991, 79, 159–165. [Google Scholar] [CrossRef]
- Khare, S.K.; Bajaj, V.; Acharya, U.R. PDCNNet: An automatic framework for the detection of Parkinson’s disease using EEG signals. IEEE Sens. J. 2021, 21, 15. [Google Scholar] [CrossRef]
- Oh, S.L.; Hagiwara, Y.; Raghavendra, U.; Yuvaraj, R.; Arunkumar, N.; Murugappan, M.; Acharya, U.R. A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput. Appl. 2020, 32, 10927–10933. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Z.; Sun, J.; Zhang, Z.; Wu, Z.; Yang, T.; Xue, G.; Cheng, C. Using a deep recurrent neural network with EEG signal to detect Parkinson’s disease. Ann. Transl. Med. 2020, 8, 874. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Zhang, L.; Bais, A. Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals. Neural Netw. 2020, 130, 75–84. [Google Scholar] [CrossRef]
- Lee, S.; Hussein, R.; Ward, R.; Jane Wang, Z.; McKeown, M.J. A convolutional-recurrent neural network approach to resting-state EEG classification in Parkinson’s disease. J. Neurosci. Methods 2021, 361, 109282. [Google Scholar] [CrossRef]
- Di Biase, L.; Di Santo, A.; Caminiti, M.L.; De Liso, A.; Shah, S.A.; Ricci, L.; Di Lazzaro, V. Gait analysis in Parkinson’s disease: An overview of the most accurate markers for diagnosis and symptoms monitoring. Sensors 2020, 20, 3529. [Google Scholar] [CrossRef]
- Xia, Y.; Yao, Z.; Ye, Q.; Cheng, N. A dual-modal attention-enhanced deep learning network for quantification of Parkinson’s disease characteristics. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 42–51. [Google Scholar] [CrossRef]
- Zhao, A.; Qi, L.; Li, J.; Dong, J.; Yu, H. A hybrid spatio-temporal model for detection and severity rating of Parkinson’s disease from gait data. Neurocomputing 2018, 315, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yogev, G.; Giladi, N.; Peretz, C.; Springer, S.; Simon, E.S.; Hausdorff, J.M. Dual tasking, gait rhythmicity, and Parkinson’s disease: Which aspects of gait are attention demanding? Eur. J. Neurosci. 2005, 22, 1248–1256. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Lowenthal, J.; Herman, T.; Gruendlinger, L.; Peretz, C.; Giladi, N. Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur. J. Neurosci. 2007, 26, 2369–2375. [Google Scholar] [CrossRef]
- Frenkel-Toledo, S.; Giladi, N.; Peretz, C.; Herman, T.; Gruendlinger, L.; Hausdorff, J.M. Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease. Mov. Disord. 2005, 20, 1109–1114. [Google Scholar] [CrossRef]
- El Maachi, I.; Bilodeau, G.-A.; Bouachir, W. Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Syst. Appl. 2020, 143, 113075. [Google Scholar] [CrossRef]
- Balaji, E.; Brindha, D.; Elumalai, V.K.; Vikrama, R. Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network. Appl. Soft Comput. 2021, 108, 107463. [Google Scholar] [CrossRef]
- Thomas, M.; Lenka, A.; Kumar Pal, P. Handwriting analysis in Parkinson’s disease: Current status and future directions. Mov. Disord. Clin. Pract. 2017, 4, 806–818. [Google Scholar] [CrossRef]
- McLennan, J.E.; Nakano, K.; Tyler, H.R.; Schwab, R.S. Micrographia in Parkinson’s disease. J. Neurol. Sci. 1972, 15, 141–152. [Google Scholar] [CrossRef]
- Drotár, P.; Mekyska, J.; Rektorová, I.; Masarová, L.; Smékal, Z.; Faundez-Zanuy, M. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson’s disease. Artif. Intell. Med. 2016, 67, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.R.; Pereira, D.R.; Silva, F.A.; Masieiro, J.P.; Weber, S.A.T.; Hook, C.; Papa, J.P. A new computer vision-based approach to aid the diagnosis of Parkinson’s disease. Comput. Methods Programs Biomed. 2016, 136, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.R.; Weber, S.A.T.; Hook, C.; Rosa, G.H.; Papa, J.P. Deep learning-aided Parkinson’s disease diagnosis from handwritten dynamics. In Proceedings of the 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Sao Paulo, Brazil, 4–7 October 2016; pp. 340–346. [Google Scholar] [CrossRef]
- Kamran, I.; Naz, S.; Razzak, I.; Imran, M. Handwriting dynamics assessment using deep neural network for early identification of Parkinson’s disease. Future Gener. Comput. Syst. 2021, 117, 234–244. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.A.; Hoffman, M.R.; Lin, L.; Abdelhalim, S.; Jiang, J.J.; McCulloch, T.M. Identification of swallowing disorders in early and mid-stage Parkinson’s disease using pattern recognition of pharyngeal high-resolution manometry data. Neurogastroenterol. Motil. 2018, 30, e13236. [Google Scholar] [CrossRef]
- Prince, J.; de Vos, M. A deep learning framework for the remote detection of Parkinson’S Disease using smart-phone sensor data. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 3144–3147. [Google Scholar] [CrossRef]
- Tjaden, K. Speech and swallowing in Parkinson’s disease. Top. Geriatr. Rehabil. 2008, 24, 115–126. [Google Scholar] [CrossRef]
- Nagasubramanian, G.; Sankayya, M. Multi-variate vocal data analysis for detection of Parkinson disease using deep learning. Neural Comput. Appl. 2021, 33, 4849–4864. [Google Scholar] [CrossRef]
- Goyal, J.; Khandnor, P.; Aseri, T.C. A hybrid approach for Parkinson’s disease diagnosis with resonance and time-frequency based features from speech signals. Expert Syst. Appl. 2021, 182, 115283. [Google Scholar] [CrossRef]
- Ali, L.; Zhu, C.; Zhang, Z.; Liu, Y. Automated Detection of Parkinson’s disease based on multiple types of sustained phonations using linear discriminant analysis and genetically optimized neural network. IEEE J. Transl. Eng. Health Med. 2019, 1–10. [Google Scholar] [CrossRef]
- Putri, F.; Caesarendra, W.; Pamanasari, E.D.; Ariyanto, M.; Setiawan, J.D. Parkinson disease detection based on voice and EMG pattern classification method for Indonesian case study. J. Energy Mech. Mater. Manuf. Eng. 2018, 3, 87. [Google Scholar] [CrossRef]
- Vasquez-Correa, J.C.; Arias-Vergara, T.; Orozco-Arroyave, J.R.; Eskofier, B.; Klucken, J.; Noth, E. Multimodal assessment of Parkinson’s disease: A deep learning approach. IEEE J. Biomed. Health Inform. 2019, 23, 1618–1630. [Google Scholar] [CrossRef]
- Oung, Q.W.; Muthusamy, H.; Basah, S.N.; Lee, H.; Vijean, V. Empirical Wavelet transform based features for classification of Parkinson’s disease severity. J. Med. Syst. 2018, 42, 29. [Google Scholar] [CrossRef]
- Ding, S.; Zhao, H.; Zhang, Y.; Xu, X.; Nie, R. Extreme learning machine: Algorithm, theory and applications. Artif. Intell. Rev. 2015, 44, 103–115. [Google Scholar] [CrossRef]
- Panch, T.; Mattie, H.; Celi, L.A. The ‘inconvenient truth’ about AI in healthcare. NPJ Digit. Med. 2019, 2, 77. [Google Scholar] [CrossRef]
- Melnychenko, O. Is artificial intelligence ready to assess an enterprise’s financial security? J. Risk Financ. Manag. 2020, 13, 191. [Google Scholar] [CrossRef]
- Tavares, J.; Ong, F.S.; Ye, T.; Xue, J.; He, M.; Gu, J.; Lin, H.; Xu, B.; Cheng, Y. Psychosocial factors affecting artificial intelligence adoption in health care in China: Cross-sectional study. J. Med. Internet Res. 2019, 21, e14316. [Google Scholar] [CrossRef] [Green Version]
- Butler, D. Translational research: Crossing the valley of death. Nature 2008, 453, 840–842. [Google Scholar] [CrossRef]
- Gourville, J.T. Eager sellers and stony buyers: Understanding the psychology of new-product adoption. Harv. Bus. Rev. 2006, 84, 98–106, 145. Available online: http://www.ncbi.nlm.nih.gov/pubmed/16770897 (accessed on 12 October 2021).
- Xiao, B.; He, N.; Wang, Q.; Cheng, Z.; Jiao, Y.; Haacke, E.M.; Yan, F.; Shi, F. Quantitative susceptibility mapping based hybrid feature extraction for diagnosis of Parkinson’s disease. NeuroImage Clin. 2019, 24, 102070. [Google Scholar] [CrossRef]
- Yasaka, K.; Kamagata, K.; Ogawa, T.; Hatano, T.; Takeshige-Amano, H.; Ogaki, K.; Andica, C.; Akai, H.; Kunimatsu, A.; Uchida, W.; et al. Parkinson’s disease: Deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation. Neuroradiology 2021, 63, 1451–1462. [Google Scholar] [CrossRef]
- Tremblay, C.; Mei, J.; Frasnelli, J. Olfactory bulb surroundings can help to distinguish Parkinson’s disease from non-parkinsonian olfactory dysfunction. NeuroImage Clin. 2020, 28, 102457. [Google Scholar] [CrossRef]
- Shinde, S.; Prasad, S.; Saboo, Y.; Kaushick, R.; Saini, J.; Pal, P.K.; Ingalhalikar, M. Predictive markers for Parkinson’s disease using deep neural nets on neuromelanin sensitive MRI. NeuroImage Clin. 2019, 22, 101748. [Google Scholar] [CrossRef]
- Shen, T.; Jiang, J.; Lin, W.; Ge, J.; Wu, P.; Zhou, Y.; Zuo, C.; Wang, J.; Yan, Z.; Shi, K. Use of overlapping group LASSO sparse deep belief network to discriminate Parkinson’s disease and normal control. Front. Neurosci. 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Tang, Z.; Wang, Y.; Xu, Z. Data driven intelligent diagnostics for Parkinson’s disease. IEEE Access 2019, 7, 106941–106950. [Google Scholar] [CrossRef]
- Hirschauer, T.J.; Adeli, H.; Buford, J.A. Computer-aided diagnosis of Parkinson’s disease using enhanced probabilistic neural network. J. Med. Syst. 2015, 39, 179. [Google Scholar] [CrossRef]
- Magesh, P.R.; Myloth, R.D.; Tom, R.J. An explainable machine learning model for early detection of Parkinson’s disease using LIME on DaTSCAN imagery. Comput. Biol. Med. 2020, 126, 104041. [Google Scholar] [CrossRef]
- Chien, C.-Y.; Hsu, S.-W.; Lee, T.-L.; Sung, P.-S.; Lin, C.-C. Using artificial neural network to discriminate Parkinson’s disease from other Parkinsonisms by focusing on putamen of dopamine transporter SPECT images. Biomedicines 2020, 9, 12. [Google Scholar] [CrossRef]
- Hsu, S.-Y.; Yeh, L.-R.; Chen, T.-B.; Du, W.-C.; Huang, Y.-H.; Twan, W.-H.; Lin, M.-C.; Hsu, Y.-H.; Wu, Y.-C.; Chen, H.-Y. Classification of the multiple stages of Parkinson’s Disease by a deep convolution neural network based on 99mTc-TRODAT-1 SPECT images. Molecules 2020, 25, 4792. [Google Scholar] [CrossRef]
- Ortiz, A.; Munilla, J.; Martínez-Ibañez, M.; Górriz, J.M.; Ramírez, J.; Salas-Gonzalez, D. Parkinson’s disease detection using isosurfaces-based features and convolutional neural networks. Front. Neuroinform. 2019, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Murcia, F.J.; Górriz, J.M.; Ramírez, J.; Ortiz, A. Convolutional neural networks for neuroimaging in Parkinson’s disease: Is preprocessing needed? Int. J. Neural Syst. 2018, 28, 1850035. [Google Scholar] [CrossRef] [PubMed]
- Nancy Jane, Y.; Khanna Nehemiah, H.; Arputharaj, K. A Q-backpropagated time delay neural network for diagnosing severity of gait disturbances in Parkinson’s disease. J. Biomed. Inform. 2016, 60, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Som, A.; Krishnamurthi, N.; Buman, M.; Turaga, P. Unsupervised pre-trained models from healthy ADLs improve Parkinson’s disease classification of gait patterns. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 784–788. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, K.; Li, H.; Albin, R.L.; Guan, Y. Deep learning identifies digital biomarkers for self-reported Parkinson’s disease. Patterns 2020, 1, 100042. [Google Scholar] [CrossRef] [PubMed]
- Yurdakul, O.C.; Subathra, M.S.P.; George, S.T. detection of parkinson’s disease from gait using neighborhood representation local binary patterns. Biomed. Signal Process. Control. 2020, 62, 102070. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, F.; Wang, Q.; Wang, Y.; Ma, L.; Zhang, Y. Parkinson’s disease classification using gait analysis via deterministic learning. Neurosci. Lett. 2016, 633, 268–278. [Google Scholar] [CrossRef]
- Alharthi, A.S.; Casson, A.J.; Ozanyan, K.B. Gait spatiotemporal signal analysis for Parkinson’s disease detection and severity rating. IEEE Sens. J. 2021, 21, 1838–1848. [Google Scholar] [CrossRef]
- Butt, A.H.; Cavallo, F.; Maremmani, C.; Rovini, E. Biomechanical parameters assessment for the classification of Parkinson disease using bidirectional long short-term memory. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 5761–5764. [Google Scholar] [CrossRef]
- Folador, J.P.; Santos, M.C.S.; Luiz, L.M.D.; De Souza, L.A.P.S.; Vieira, M.F.; Pereira, A.A.; Andrade, A.D.O. On the use of histograms of oriented gradients for tremor detection from sinusoidal and spiral handwritten drawings of people with Parkinson’s disease. Med. Biol. Eng. Comput. 2021, 59, 195–214. [Google Scholar] [CrossRef]
- Yang, T.-L.; Lin, C.-H.; Chen, W.-L.; Lin, H.-Y.; Su, C.-S.; Liang, C.-K. Hash transformation and machine learning-based decision-making classifier improved the accuracy rate of automated Parkinson’s disease screening. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 72–82. [Google Scholar] [CrossRef]
- Cantürk, İ. Fuzzy recurrence plot-based analysis of dynamic and static spiral tests of Parkinson’s disease patients. Neural Comput. Appl. 2021, 33, 349–360. [Google Scholar] [CrossRef]
- Gil-Martín, M.; Montero, J.M.; San-Segundo, R. Parkinson’s disease detection from drawing movements using convolutional neural networks. Electronics 2019, 8, 907. [Google Scholar] [CrossRef] [Green Version]
- Naseer, A.; Rani, M.; Naz, S.; Razzak, M.I.; Imran, M.; Xu, G. Refining Parkinson’s neurological disorder identification through deep transfer learning. Neural Comput. Appl. 2020, 32, 839–854. [Google Scholar] [CrossRef] [Green Version]
- Gazda, M.; Hires, M.; Drotar, P. Multiple-fine-tuned convolutional neural networks for Parkinson’s disease diagnosis from offline handwriting. IEEE Trans. Syst. Man Cybern. Syst. 2021, 1–12. [Google Scholar] [CrossRef]
- Pereira, C.R.; Pereira, D.R.; de Rosa, G.H.; Albuquerque, V.H.C.; Weber, S.A.; Hook, C.; Papa, J.P. Handwritten dynamics assessment through convolutional neural networks: An application to Parkinson’s disease identification. Artif. Intell. Med. 2018, 87, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Afonso, L.C.; Rosa, G.H.; Pereira, C.R.; Weber, S.A.; Hook, C.; Albuquerque, V.H.C.; Papa, J.P. A recurrence plot-based approach for Parkinson’s disease identification. Futur. Gener. Comput. Syst. 2019, 94, 282–292. [Google Scholar] [CrossRef]
- Ribeiro, L.C.F.; Afonso, L.C.S.; Papa, J.P. Bag of samplings for computer-assisted Parkinson’s disease diagnosis based on recurrent neural networks. Comput. Biol. Med. 2019, 115, 103477. [Google Scholar] [CrossRef]
- Diaz, M.; Ferrer, M.A.; Impedovo, D.; Pirlo, G.; Vessio, G. Dynamically enhanced static handwriting representation for Parkinson’s disease detection. Pattern Recognit. Lett. 2019, 128, 204–210. [Google Scholar] [CrossRef]
- Diaz, M.; Moetesum, M.; Siddiqi, I.; Vessio, G. Sequence-based dynamic handwriting analysis for Parkinson’s disease detection with one-dimensional convolutions and BiGRUs. Expert Syst. Appl. 2021, 168, 114405. [Google Scholar] [CrossRef]
- Nõmm, S.; Zarembo, S.; Medijainen, K.; Taba, P.; Toomela, A. Deep CNN Based classification of the archimedes spiral drawing tests to support diagnostics of the Parkinson’s disease. IFAC Pap.Online 2020, 53, 260–264. [Google Scholar] [CrossRef]
- Peker, M.; Şen, B.; Delen, D. Computer-aided diagnosis of Parkinson’s disease using complex-valued neural networks and mRMR feature selection algorithm. J. Healthc. Eng. 2015, 6, 281–302. [Google Scholar] [CrossRef] [Green Version]
- Wodzinski, M.; Skalski, A.; Hemmerling, D.; Orozco-Arroyave, J.R.; Noth, E. Deep learning approach to Parkinson’s disease detection using voice recordings and convolutional neural network dedicated to image classification. In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 717–720. [Google Scholar] [CrossRef]
- Avci, D.; Dogantekin, A. An expert diagnosis system for Parkinson disease based on genetic algorithm-wavelet kernel-extreme learning machine. Parkinson’s Dis. 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Vilda, P.; Mekyska, J.; Ferrández, J.M.; Palacios-Alonso, D.; Gómez-Rodellar, A.; Rodellar-Biarge, V.; Galaz, Z.; Smekal, Z.; Eliasova, I.; Kostalova, M.; et al. Parkinson disease detection from speech articulation neuromechanics. Front. Neuroinform. 2017, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.-J.; Wang, R.-F.; Wang, J.; Yu, D.-H. Parkinson’s disease detection based on spectrogram-deep convolutional generative adversarial network sample augmentation. IEEE Access 2020, 8, 206888–206900. [Google Scholar] [CrossRef]
- Karaman, O.; Çakın, H.; Alhudhaif, A.; Polat, K. Robust automated Parkinson disease detection based on voice signals with transfer learning. Expert Syst. Appl. 2021, 178, 115013. [Google Scholar] [CrossRef]
- Åström, F.; Koker, R. A parallel neural network approach to prediction of Parkinson’s disease. Expert Syst. Appl. 2011, 38, 12470–12474. [Google Scholar] [CrossRef]
- Narendra, N.P.; Schuller, B.; Alku, P. The detection of Parkinson’s Disease from speech using voice source information. IEEE ACM Trans. Audio Speech Lang. Process. 2021, 29, 1925–1936. [Google Scholar] [CrossRef]
Boolean Search String | |||
---|---|---|---|
Database | [Title] | AND [Title/Abstract] | No. of Studies |
PubMed | “parkinson” AND “disease” | “Neural network” | 178 |
“Deep learning” | |||
Google Scholar | “Prediction” OR “Diagnosis” OR “Detection” | 248 | |
IEEE | “Neural network” | 135 | |
“Deep learning” | |||
Science direct | “Neural network” | 233 | |
“Deep learning” |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loh, H.W.; Hong, W.; Ooi, C.P.; Chakraborty, S.; Barua, P.D.; Deo, R.C.; Soar, J.; Palmer, E.E.; Acharya, U.R. Application of Deep Learning Models for Automated Identification of Parkinson’s Disease: A Review (2011–2021). Sensors 2021, 21, 7034. https://doi.org/10.3390/s21217034
Loh HW, Hong W, Ooi CP, Chakraborty S, Barua PD, Deo RC, Soar J, Palmer EE, Acharya UR. Application of Deep Learning Models for Automated Identification of Parkinson’s Disease: A Review (2011–2021). Sensors. 2021; 21(21):7034. https://doi.org/10.3390/s21217034
Chicago/Turabian StyleLoh, Hui Wen, Wanrong Hong, Chui Ping Ooi, Subrata Chakraborty, Prabal Datta Barua, Ravinesh C. Deo, Jeffrey Soar, Elizabeth E. Palmer, and U. Rajendra Acharya. 2021. "Application of Deep Learning Models for Automated Identification of Parkinson’s Disease: A Review (2011–2021)" Sensors 21, no. 21: 7034. https://doi.org/10.3390/s21217034
APA StyleLoh, H. W., Hong, W., Ooi, C. P., Chakraborty, S., Barua, P. D., Deo, R. C., Soar, J., Palmer, E. E., & Acharya, U. R. (2021). Application of Deep Learning Models for Automated Identification of Parkinson’s Disease: A Review (2011–2021). Sensors, 21(21), 7034. https://doi.org/10.3390/s21217034