Unbalanced Hybrid AOA/RSSI Localization for Simplified Wireless Sensor Networks
Abstract
:1. Introduction
2. Related Works
2.1. RSSI Localization
2.2. Hybrid AOA/RSSI Localization
3. The Proposed Method
4. Performance Evaluation and Discussions
4.1. Simulation Setup
4.2. Impact of AOA and RSSI Measurement Errors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AOA | Angle-of-Arrival |
CRLB | Cramer-Rao Lower Bound |
FIM | Fisher Information Matrix |
GPS | Global Positioning System |
LS | Least Square |
NLOS | Non-Line-of-sight |
ML | Maximum Likelihood |
OFDM | Orthogonal-Frequency Division Multiplexing |
Probability Density Function | |
PLE | Path-loss Exponent |
RMSE | Root Mean Square Error |
RSSI | Received Signal Strength Indicator |
TOA | Time-of-Arrival |
TDOA | Time-Different-of-Arrival |
TOF | Time-of-Flight |
UAV | Unmanned Aerial Vehicle |
WLS | Weighted Least Square |
WSN | Wireless Sensor Network |
Appendix A. CRLB Derivation
References
- Gonçalves Ferreira, A.F.G.; Fernandes, D.M.A.; Catarino, A.P.; Monteiro, J.L. Localization and positioning systems for emergency responders: A survey. IEEE Commun. Surv. Tutor. 2017, 19, 2836–2870. [Google Scholar] [CrossRef]
- Femminella, M.; Reali, G. A zero-configuration tracking system for first responders networks. IEEE Syst. J. 2017, 11, 2917–2928. [Google Scholar] [CrossRef]
- Han, G.; Xu, H.; Duong, T.Q.; Jiang, J.; Hara, T. Localization algorithms of Wireless Sensor Networks: A survey. Telecommun. Syst. 2013, 52, 2419–2436. [Google Scholar] [CrossRef]
- Win, M.Z.; Shen, Y.; Dai, W. A theoretical foundation of network localization and navigation. Proc. IEEE 2018, 106, 1136–1165. [Google Scholar] [CrossRef]
- Tomic, S.; Beko, M.; Dinis, R.; Bernardo, L. On target localization using combined RSS and AoA measurements. Sensors 2018, 18, 1266. [Google Scholar] [CrossRef] [Green Version]
- Zekavat, R.; Buehrer, R.M. Handbook of Position Location: Theory, Practice and Advances, 1st ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2011. [Google Scholar]
- Nguyen, N.M.; Tran, L.C.; Safaei, F.; Phung, S.L.; Vial, P.; Huynh, N.; Cox, A.; Harada, T.; Barthelemy, J. Performance evaluation of non-GPS based localization techniques under shadowing effects. Sensors 2019, 19, 2633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, A.; Ji, X.; Wu, D.; Bai, X.; Ding, N.; Pang, J.; Chen, S.; Chen, X.; Fang, D. GuideLoc: UAV-assisted multitarget localization system for disaster rescue. Mob. Inf. Syst. 2017, 2017, 1267608. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Kim, T.; Chung, W. Hybrid RSS/AOA localization using approximated weighted least square in Wireless Sensor Networks. Sensors 2020, 20, 1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K. 3-D localization error analysis in wireless networks. IEEE Trans. Wirel. Commun. 2007. [Google Scholar] [CrossRef]
- Wang, S.; Jackson, B.R.; Inkol, R. Hybrid RSS/AOA emitter location estimation based on least squares and maximum likelihood criteria. In Proceedings of the 26th Biennial Symposium on Communications (QBSC), Kingston, ON, Canada, 28–29 May 2012; pp. 24–29. [Google Scholar]
- Yu, K.; Sharp, I.; Guo, Y.J. Ground-Based Wireless Positioning; IEEE Press Series on Digital & Mobile Communication; Wiley: Chichester, West Sussex, UK, 2009. [Google Scholar]
- Biswas, P.; Lian, T.C.; Wang, T.C.; Ye, Y. Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sens. Netw. 2006, 2, 188–220. [Google Scholar] [CrossRef]
- Qi, H.; Mo, L.; Wu, X. SDP relaxation methods for RSS/AOA-based localization in sensor networks. IEEE Access 2020, 8, 55113–55124. [Google Scholar] [CrossRef]
- Qi, Q.; Li, Y.; Wu, Y.; Wang, Y.; Yue, Y.; Wang, X. RSS-AOA-based localization via mixed semi-definite and second-order cone relaxation in 3-D Wireless Sensor Networks. IEEE Access 2019, 7, 117768–117779. [Google Scholar] [CrossRef]
- Chan, Y.T.; Chan, F.; Read, W.; Jackson, B.R.; Lee, B.H. Hybrid localization of an emitter by combining angle-of-arrival and receive signal strength measurements. In Proceedings of the 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), Toronto, ON, Canada, 4–7 May 2014; pp. 1–5. [Google Scholar]
- Khan, M.; Salman, N.; Kemp, A.; Mihaylova, L. Localisation of sensor nodes with hybrid measurements in Wireless Sensor Networks. Sensors 2016, 16, 1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- L. N. Nguyen, T.; D. Vy, T.; Shin, Y. An efficient hybrid RSS-AoA localization for 3D Wireless Sensor Networks. Sensors 2019, 19, 2121. [Google Scholar] [CrossRef] [Green Version]
- Tomic, S.; Beko, M.; Dinis, R.; Montezuma, P. A closed-form solution for RSS/AoA target localization by spherical coordinates conversion. IEEE Wirel. Commun. Lett. 2016, 5, 680–683. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.R.; Lin, C.M.; Lin, F.Y.; Huang, S.T. ALRD: AoA Localization with RSSI differences of directional antennas for Wireless Sensor Networks. Int. J. Distrib. Sens. Netw. 2013, 9, 529489. [Google Scholar] [CrossRef]
- Popescu, D.; Stoican, F.; Stamatescu, G.; Chenaru, O.; Ichim, L. A survey of collaborative UAV-WSN systems for efficient monitoring. Sensors 2019, 19, 4690. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Linear least squares localization in sensor networks. EURASIP J. Wirel. Commun. Netw. 2015, 2015, 51. [Google Scholar] [CrossRef]
- So, H.C.; Chan, F.K.W. A generalized subspace approach for mobile positioning with time-of-arrival measurements. IEEE Trans. Signal Process. 2007, 55, 5103–5107. [Google Scholar] [CrossRef]
- Lin, L.; So, H.C.; Chan, F.K.W. Multidimensional scaling approach for node localization using received signal strength measurements. Digit. Signal Process. 2014, 34, 39–47. [Google Scholar] [CrossRef]
- Sayed, A.H.; Tarighat, A.; Khajehnouri, N. Network-based wireless location finding. Signal Process. Mag. IEEE 2005, 22, 24–40. [Google Scholar] [CrossRef]
- Rupp, M.; Schwarz, S. An LS localisation method for massive MIMO transmission systems. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019. [Google Scholar] [CrossRef]
- Guvenc, I.; Gezici, S.; Watanabe, F.; Inamura, H. Enhancements to linear least squares localization through reference selection and ML estimation. In Proceedings of the 2008 IEEE Wireless Communications and Networking Conference, Las Vegas, NV, USA, 31 March–3 April 2008; pp. 284–289. [Google Scholar]
- Feng, Q.; McGeehan, J.; Tameh, E.K.; Nix, A.R. Path loss models for air-to-ground radio channels in urban environments. In Proceedings of the IEEE 63rd Vehicular Technology Conference, Melbourne, VIC, Australia, 7–10 May 2006; Volume 6, pp. 2901–2905. [Google Scholar]
- Huang, X.; Guo, Y.J. Radio frequency self-interference cancellation with analog least mean-square loop. IEEE Trans. Microw. Theory Tech. 2017, 65, 3336–3350. [Google Scholar] [CrossRef]
- Le, A.T.; Tran, L.C.; Huang, X. Cyclostationary analysis of analog least mean square loop for self-interference cancellation in in-band full-duplex systems. IEEE Commun. Lett. 2017, 21, 2738–2741. [Google Scholar] [CrossRef] [Green Version]
- Le, A.T.; Tran, L.C.; Huang, X.; Guo, Y.J.; Vardaxoglou, J.C. Frequency domain characterization and performance bounds of ALMS loop for RF self-interference cancellation. IEEE Trans. Commun. 2019, 67, 682–692. [Google Scholar] [CrossRef]
- Le, A.T.; Tran, L.C.; Huang, X.; Guo, Y.J. Analog least mean square loop for self-interference cancellation: A practical perspective. Sensors 2020, 20, 270. [Google Scholar] [CrossRef] [Green Version]
- Le, N.P.; Tran, L.C.; Safaei, F. Energy-efficiency analysis of per-subcarrier antenna selection with peak-power reduction in MIMO-OFDM wireless systems. Int. J. Antennas Propag. 2014, 2014, 313195. [Google Scholar] [CrossRef]
- Chan, Y.T.; Ho, K.C. A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 1994, 42, 1905–1915. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, A.T.; Tran, L.C.; Huang, X.; Ritz, C.; Dutkiewicz, E.; Phung, S.L.; Bouzerdoum, A.; Franklin, D. Unbalanced Hybrid AOA/RSSI Localization for Simplified Wireless Sensor Networks. Sensors 2020, 20, 3838. https://doi.org/10.3390/s20143838
Le AT, Tran LC, Huang X, Ritz C, Dutkiewicz E, Phung SL, Bouzerdoum A, Franklin D. Unbalanced Hybrid AOA/RSSI Localization for Simplified Wireless Sensor Networks. Sensors. 2020; 20(14):3838. https://doi.org/10.3390/s20143838
Chicago/Turabian StyleLe, Anh Tuyen, Le Chung Tran, Xiaojing Huang, Christian Ritz, Eryk Dutkiewicz, Son Lam Phung, Abdesselam Bouzerdoum, and Daniel Franklin. 2020. "Unbalanced Hybrid AOA/RSSI Localization for Simplified Wireless Sensor Networks" Sensors 20, no. 14: 3838. https://doi.org/10.3390/s20143838
APA StyleLe, A. T., Tran, L. C., Huang, X., Ritz, C., Dutkiewicz, E., Phung, S. L., Bouzerdoum, A., & Franklin, D. (2020). Unbalanced Hybrid AOA/RSSI Localization for Simplified Wireless Sensor Networks. Sensors, 20(14), 3838. https://doi.org/10.3390/s20143838