Characterisation of Ex Vivo Liver Thermal Properties for Electromagnetic-Based Hyperthermic Therapies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermal Property Measurement Method
2.2. Experimental Protocol
- Measurements were conducted to investigate the thermal properties of liver tissue as a function of the increase of temperature (n = 21). For each sample, the thermal bath was set to specific temperatures, and the following were tested: 25 °C, 27 °C, 36 °C, 40 °C, 44 °C, 49 °C, 55 °C, 60 °C, 70 °C, 80 °C, 92 °C and 97 °C. Measurements were performed only when the whole sample reached thermal equilibrium with the thermal bath temperature. In each sample, measurements were taken in three different locations. Thermal property measurements were repeated three times in each location with a time interval of 10 min. When the sensor was moved from one location to another, it was left in place 15 min before taking the next measurement. These time intervals guaranteed thermal equilibrium between the sensor and the tissue.
- Measurements were conducted to investigate the thermal properties of liver tissue as a function of the decrease of temperature (n = 3). The sample was placed in the thermal bath set at 90 °C (n = 2) or 95 °C (n = 1). After the sample reached the desired temperature, the thermal bath was turned off and single measurements were conducted always in the same location every 30 min, until the sample reached body temperature (37 °C).
2.3. Measurement Uncertainty
2.4. Thermal Property Modelling with Temperature
3. Results and Discussion
3.1. Thermal Properties: Temperature Increase Measurements
3.2. Thermal Properties: Temperature Natural Decrease Measurements
3.3. Water Loss and Density Evaluation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cheung, A.Y.; Neyzari, A. Deep local hyperthermia for cancer therapy: External electromagnetic and ultrasound techniques. Cancer Res. 1984, 44, 4736–4744. [Google Scholar]
- Wust, P.; Hildebrandt, B.; Sreenivase, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3, 487–497. [Google Scholar] [CrossRef]
- Ahmed, M.; Brace, C.L.; Lee, F.T.; Goldberg, S.N. Principles of and advances in percutaneous ablation. Radiology 2011, 258, 351–369. [Google Scholar] [CrossRef] [PubMed]
- Brace, C.L. Microwave tissue ablation: Biophysics, technology and applications. Crit. Rev. Biomed. Eng. 2010, 38, 65–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossmann, C.; Haemmerich, D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit. Rev. Biomed. Eng. 2014, 42, 467–492. [Google Scholar] [CrossRef] [Green Version]
- Lopresto, V.; Pinto, R.; Farina, L.; Cavagnaro, M. Treatment planning in microwave thermal ablation: Clinical gaps and recent research advances. Int. J. Hyperth. 2017, 33, 83–100. [Google Scholar] [CrossRef] [Green Version]
- Lopresto, V.; Pinto, R.; Farina, L.; Cavagnaro, M. Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning. Med. Eng. Phys. 2017, 46, 63–70. [Google Scholar] [CrossRef]
- Amin, B.; Shahzad, A.; Farina, L.; Parle, E.; McNamara, L.; O’Halloran, M.; Elahi, M.A. Dielectric characterization of diseased human trabecular bones at microwave frequency. Med. Eng. Phys. 2020, 78, 21–28. [Google Scholar] [CrossRef]
- Porter, E.; La Gioia, A.; Salahuddin, S.; Decker, S.; Shahzad, A.; Elahi, M.A.; O’Halloran, M.; Beyan, O. Minimum information for dielectric measurements of biological tissues (MINDER): A framework for repeatable and reusable data. Int. J. RF Microw. Comput.-Aided Eng. 2018, 28, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Salahuddin, S.; La Gioia, A.; Shahzad, A.; Elahi, M.A.; Kumar, A.; Kilroy, D.; Porter, E.; O’Halloran, M. An anatomically accurate dielectric profile of the porcine kidney. Biomed. Phys. Eng. Express 2018, 4, 25–42. [Google Scholar] [CrossRef]
- Ruvio, G.; Farina, L.; Bottiglieri, A.; Eaton-Evans, J.; Elahi, M.E.; O’Halloran, M.; Pinto, R.; Lopresto, V.; Cavagnaro, M. Comparison of coaxial open-ended probe based dielectric measurements on ex-vivo thermally ablated liver tissue. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019. [Google Scholar]
- Pollacco, D.A.; Farrugia, L.; Caligari Conti, M.; Farina, L.; Schembri Wismayer, P.; Sammut, C.V. Characterization of the dielectric properties of biological tissues using mixture equations and correlations to different states of hydration. Biomed. Phys. Eng. Express 2019, 5, 22–35. [Google Scholar] [CrossRef]
- Farina, L.; Ruvio, G.; Pinto, R.; Vannucci, L.; Cavagnaro, M.; Lopresto, V. Development of a portable setup suitable for in vivo measurement of the dielectric properties of biological tissues. In Proceedings of the 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017. [Google Scholar]
- Yilmaz, T.; Alkan, F.A. In vivo dielectric properties of healthy and benign rat mammary tissues from 500 MHz to 18 GHz. Sensors 2020, 20, 2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maenhout, G.; Markovic, T.; Ocket, I.; Nauwelaers, B. Effect of open-ended coaxial probe-to-tissue contact pressure on dielectric measurements. Sensors 2020, 20, 2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Gioia, A.; Porter, E.; Merunka, I.; Shahzad, A.; Salahuddin, S.; Jones, M.; O’Halloran, M. Open-Ended Coaxial Probe Technique for Dielectric Measurement of Biological Tissues: Challenges and Common Practices. Diagnostics 2018, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41, 2231–2249. [Google Scholar] [CrossRef] [Green Version]
- Pollacco, D.A.; Farina, L.; Wismayer, P.S.; Farrugia, L.; Sammut, C.V. Characterization of the dielectric properties of biological tissues and their correlation to tissue hydration. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2191–2197. [Google Scholar] [CrossRef]
- Farrugia, L.; Wismayer, P.S.; Mangion, L.Z.; Sammut, C.V. Accurate in vivo dielectric properties of liver from 500 MHz to 40 GHz and their correlation to ex vivo measurements. Electromagn. Biol. Med. 2016, 35, 365–373. [Google Scholar] [CrossRef]
- Shahzad, A.; Khan, S.; Jones, M.; Dwyer, R.M.; O’Halloran, M. Investigation of the effect of dehydration on tissue dielectric properties in ex vivo measurements. Biomed. Phys. Eng. Express 2017, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Valvano, J.W.; Cochran, J.R.; Diller, K.R. Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors. Int. J. Thermophys. 1985, 6, 301–311. [Google Scholar] [CrossRef]
- Bhavaraju, N.C.; Valvano, J.W. Thermophysical properties of swine myocardium. Int. J. Thermophys. 1999, 20, 665–676. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Mahajan, R.L. Temperature dependence of thermal conductivity of biological tissues. Physiol. Meas. 2003, 24, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Haemmerich, D.; Santos, I.D.; Schutt, D.J.; Webster, J.G.; Mahvi, D.M. In vitro measurements of temperature-dependent specific heat of liver tissue. Med. Eng. Phys. 2006, 28, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Yamazaki, N.; Kobayashi, Y.; Miyashita, T.; Hashizume, M.; Fujie, M.G. Temperature dependence of thermal conductivity of liver based on various experiments and a numerical simulation for RF ablation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 3222–3228. [Google Scholar]
- Guntur, S.R.; Lee, K.I.; Paeng, D.G.; Coleman, A.J.; Choi, M.J. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation. Ultrasound Med. Biol. 2013, 39, 1771–1784. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Morrissey, M.; Bischof, J.C. Thermal processing of biological tissue at high temperatures: Impact of protein denaturation and water loss on the thermal properties of human and porcine liver in the range 25–80 °C. J. Heat Transf. 2013, 135, 1–7. [Google Scholar] [CrossRef]
- Lopresto, V.; Argentieri, A.; Pinto, R.; Cavagnaro, M. Temperature dependence of thermal properties of ex vivo liver tissue up to ablative temperatures. Phys. Med. Biol. 2019, 64, 1–13. [Google Scholar] [CrossRef]
- Valvano, J.W.; Allen, J.T.; Bowman, H.F. The simultaneous measurement of thermal conductivity, thermal diffusivity, and perfusion in small volumes of tissue. J. Biomech. Eng. 1984, 106, 192–197. [Google Scholar] [CrossRef]
- Ramachandran, T.; Screenivasan, K.; Sivakumar, R. Water vaporization from heated tissue: An in vitro study by differential scanning calorimetry. Lasers Surg. Med. 1996, 19, 413–415. [Google Scholar] [CrossRef]
- Yang, D.; Converse, M.C.; Mahvi, D.M.; Webster, J.G. Measurement and analysis of tissue temperature during microwave liver ablation. IEEE Trans. Biomed. Eng. 2007, 54, 150–155. [Google Scholar] [CrossRef]
- Lopresto, V.; Strigari, L.; Farina, L.; Minosse, S.; Pinto, R.; D’Alessio, D.; Cassano, B.; Cavagnaro, M. CT-based investigation of the contraction of Ex Vivo Tissue Undergoing microwave thermal ablation. Phys. Med. Biol. 2018, 63, 055019. [Google Scholar] [CrossRef]
- Silva, N.P.; Bottiglieri, A.; Conceição, R.; O’Halloran, M.; Farina, L. Thermal Properties of Ex Vivo Biological Tissue at Room and Body Temperature. In Proceedings of the 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020. [Google Scholar]
- METER Group Inc. Tempos; METER Group Inc.: Pullman, WA, USA, 2018. [Google Scholar]
- Hughes, I.G.; Hase, T.P.A. Error Propagation; Oxford University Press: Oxford, UK, 2010; pp. 37–52. [Google Scholar]
- Taylor, B.N.; Kuyatt, C.E. Guidelines for Evaluating and Expressing the Uncertainty Of NIST Measurement Results; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1994; pp. 1–20. [Google Scholar]
- Mcintosh, R.L.; Anderson, V. A comprehensive tissue properties database provided for the thermal assessment of a human at test. Biophys. Rev. Lett. 2011, 5, 129–151. [Google Scholar] [CrossRef]
- Nesvadba, P. Engineering Properties of Foods; CRC Press—Taylor & Francis Group: Abingdon-on-Thames, UK, 2014; pp. 637–676. [Google Scholar]
n | T [°C] | k [W m−1 K−1] | [MJ m−3 K−1] | D [mm2 s−1] | ||||
---|---|---|---|---|---|---|---|---|
avg | avg | avg | avg | |||||
1 | 25.35 | 0.10 | 0.50 | 0.06 | 3.39 | 0.40 | 0.15 | 0.02 |
2 | 26.93 | 0.76 | 0.48 | 0.06 | 3.32 | 0.39 | 0.15 | 0.02 |
3 | 35.68 | 0.03 | 0.46 | 0.05 | 3.23 | 0.37 | 0.14 | 0.02 |
4 | 36.27 | 0.12 | 0.49 | 0.06 | 3.25 | 0.41 | 0.15 | 0.02 |
5 | 39.55 | 0.11 | 0.53 | 0.06 | 3.52 | 0.41 | 0.15 | 0.02 |
6 | 40.24 | 0.07 | 0.53 | 0.06 | 3.52 | 0.41 | 0.15 | 0.02 |
7 | 44.11 | 0.33 | 0.49 | 0.06 | 3.42 | 0.41 | 0.14 | 0.02 |
8 | 44.58 | 0.09 | 0.52 | 0.06 | 3.50 | 0.41 | 0.15 | 0.02 |
9 | 48.87 | 0.22 | 0.53 | 0.06 | 3.52 | 0.41 | 0.15 | 0.02 |
10 | 49.49 | 0.18 | 0.53 | 0.06 | 3.55 | 0.41 | 0.15 | 0.02 |
11 | 55.05 | 0.06 | 0.46 | 0.05 | 3.33 | 0.39 | 0.14 | 0.02 |
12 | 55.37 | 0.14 | 0.48 | 0.06 | 3.38 | 0.39 | 0.14 | 0.02 |
13 | 59.59 | 0.21 | 0.53 | 0.06 | 3.42 | 0.43 | 0.16 | 0.02 |
14 | 60.34 | 0.17 | 0.54 | 0.06 | 3.53 | 0.42 | 0.15 | 0.02 |
15 | 70.37 | 0.26 | 0.55 | 0.06 | 3.50 | 0.41 | 0.16 | 0.02 |
16 | 70.52 | 0.46 | 0.54 | 0.06 | 3.53 | 0.42 | 0.15 | 0.02 |
17 | 79.49 | 0.44 | 0.54 | 0.06 | 3.42 | 0.40 | 0.16 | 0.02 |
18 | 80.46 | 0.25 | 0.56 | 0.07 | 3.37 | 0.39 | 0.17 | 0.02 |
19 | 91.97 | 0.52 | 0.61 | 0.07 | 3.41 | 0.41 | 0.18 | 0.02 |
20 | 92.03 | 0.16 | 0.58 | 0.07 | 3.55 | 0.41 | 0.16 | 0.02 |
21 | 96.79 | 0.15 | 1.08 | 0.16 | 5.05 | 0.89 | 0.23 | 0.05 |
Thermal Property | a | b | c | |
---|---|---|---|---|
Thermal conductivity, k [W m−1 K−1] | 0.502 | 1.447 | 0.256 | 0.93 |
Volumetric heat capacity, [MJ m−3 K−1] | 3.415 | 1.278 | 0.289 | 0.95 |
Thermal diffusivity, D [mm2 s−1] | 0.150 | 1.379 | 0.164 | 0.81 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, N.P.; Bottiglieri, A.; Conceição, R.C.; O’Halloran, M.; Farina, L. Characterisation of Ex Vivo Liver Thermal Properties for Electromagnetic-Based Hyperthermic Therapies. Sensors 2020, 20, 3004. https://doi.org/10.3390/s20103004
Silva NP, Bottiglieri A, Conceição RC, O’Halloran M, Farina L. Characterisation of Ex Vivo Liver Thermal Properties for Electromagnetic-Based Hyperthermic Therapies. Sensors. 2020; 20(10):3004. https://doi.org/10.3390/s20103004
Chicago/Turabian StyleSilva, Nuno P., Anna Bottiglieri, Raquel C. Conceição, Martin O’Halloran, and Laura Farina. 2020. "Characterisation of Ex Vivo Liver Thermal Properties for Electromagnetic-Based Hyperthermic Therapies" Sensors 20, no. 10: 3004. https://doi.org/10.3390/s20103004
APA StyleSilva, N. P., Bottiglieri, A., Conceição, R. C., O’Halloran, M., & Farina, L. (2020). Characterisation of Ex Vivo Liver Thermal Properties for Electromagnetic-Based Hyperthermic Therapies. Sensors, 20(10), 3004. https://doi.org/10.3390/s20103004