A Displacement Sensor Based on a Normal Mode Helical Antenna
Abstract
:1. Introduction
2. Displacement Sensor Using a Helical Antenna
2.1. Computational Electromagnetics Model of Proposed Displacement Sensor
2.2. Approximation Using Perturbation Theory
2.2.1. Moving Rod in the Steep Gradient Region
2.2.2. Moving Rod in the Flat Gradient Region
3. Design of the Displacement Sensor
3.1. Design of a Normal Mode Helical Antenna
3.2. Design of the Silicon Rod
4. Modeling and Simulation
Performance Simulation
5. Experiment
5.1. Instrumentation Setup
5.2. Results and Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Symbol | Parameter Definition |
electric field intensity of the initial state | |
magnetic field intensity of the initial state | |
electric field intensity of the subtracting state | |
magnetic field intensity of the subtracting state | |
resonant frequencies of the initial state | |
resonant frequencies of subtracting state | |
magnetic permeability | |
dielectric constant | |
change of magnetic permeability | |
change of dielectric constant | |
complex vector | |
volume of the cavity | |
subtracted area in the steep gradient region | |
added area in the steep gradient region | |
resonant frequencies of the adding state in the steep gradient region | |
resonant frequencies of the adding state in the flat gradient region | |
subtracted area in the flat gradient region | |
added area in the flat gradient region | |
diameter of a helical antenna | |
number of turns of a helical antenna | |
spacing between adjacent turns of a helical antenna | |
length of a silicon rod | |
diameter of a silicon rod | |
total length of the wire of helical antenna | |
order of resonant frequencies of the helical antenna | |
wave length of helical antenna | |
resonant frequencies of the helical antenna in design occasion |
References
- Kongkitkul, W.; Hirakawa, D.; Sugimoto, T.; Kawahata, S.; Yoshida, T.; Ito, S.; Tatsuoka, F.; Li, G.; Chen, Y.; Tang, X. Post-Construction Time History of Tensile Load in Geogrid Arranged in A Full-Scale High Wall. In Proceedings of the 4th Asian Regional Conference on Geosynthetics, Shanghai, China, 17–20 June 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 64–69. [Google Scholar]
- Ayyildiz, C.; Erdem, H.E.; Dirikgil, T.; Dugenci, O.; Kocak, T.; Altun, F.; Gungor, V.C. Structure health monitoring using wireless sensor networks on structural elements. Ad Hoc Netw. 2019, 82, 68–76. [Google Scholar] [CrossRef]
- Memmolo, V.; Monaco, E.; Boffa, N.; Maio, L.; Ricci, F. Guided wave propagation and scattering for structural health monitoring of stiffened composites. Compos. Struct. 2018, 184, 568–580. [Google Scholar] [CrossRef]
- Kudela, P.; Radzienski, M.; Ostachowicz, W.; Yang, Z. Structural Health Monitoring system based on a concept of Lamb wave focusing by the piezoelectric array. Mech. Syst. Signal Process. 2018, 108, 21–32. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, D.; Zhou, Y.; Liu, C.; Che, S. Design of a high-precision and non-contact dynamic angular displacement measurement with dual-Laser Doppler Vibrometers. Sci. Rep. 2018, 8, 9094. [Google Scholar] [CrossRef] [PubMed]
- Mandal, H.; Bera, S.K.; Saha, S.; Sadhu, P.K.; Bera, S.C. Study of a Modified LVDT Type Displacement Transducer With Unlimited Range. IEEE Sens. J. 2018, 18, 9501–9514. [Google Scholar] [CrossRef]
- Alshamaa, D.; Mourad-Chehade, F.; Honeiné, P. Localization of Sensors in Indoor Wireless Networks: An Observation Model Using WiFi RSS. In Proceedings of the 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 26–28 February 2018; pp. 1–5. [Google Scholar]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.; Villa-Medina, J.F.; Nieto-Garibay, A.; Porta-Gándara, M.Á. Automated irrigation system using a wireless sensor network and GPRS module. IEEE Trans. Instrum. Meas. 2013, 63, 166–176. [Google Scholar] [CrossRef]
- Kobo, H.I.; Abu-Mahfouz, A.M.; Hancke, G.P. Fragmentation-Based Distributed Control System for Software-Defined Wireless Sensor Networks. IEEE Trans. Ind. Inform. 2019, 15, 901–910. [Google Scholar] [CrossRef]
- Cho, C.; Yi, X.; Wang, Y.; Tentzeris, M.M.; Leon, R.T. Compressive Strain Measurement Using RFID Patch Antenna Sensors. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 10 April 2014; p. 90610X. [Google Scholar]
- Lee, W.K.; Schubert, M.J.W.; Ooi, B.Y.; Ho, S.J.Q. Multi-Source Energy Harvesting and Storage for Floating Wireless Sensor Network Nodes With Long Range Communication Capability. IEEE Trans. Ind. Appl. 2018, 54, 2606–2615. [Google Scholar] [CrossRef]
- He, J.; Wen, T.; Qian, S.; Zhang, Z.; Tian, Z.; Zhu, J.; Mu, J.; Hou, X.; Geng, W.; Cho, J.; et al. Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system. Nano Energy 2018, 43, 326–339. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Floerkemeier, C.; Sarma, S. Towards Tag Antenna Based Sensing—An RFID Displacement Sensor. In Proceedings of the IEEE International Conference on RFID, Orlando, FL, USA, 27–28 April 2009; pp. 95–102. [Google Scholar]
- Huang, Y.S.; Chen, Y.Y.; Wu, T.T. A passive wireless hydrogen surface acoustic wave sensor based on Pt-coated ZnO nanorods. Nanotechnology 2010, 21, 095503. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.C.; Vigliotti, A.J.; Verdi, F.W.; Walsh, S.M. Wireless, passive, resonant-circuit, inductively coupled, inductive strain sensor. Sens. Actuators A Phys. 2002, 102, 61–66. [Google Scholar] [CrossRef]
- Caizzone, S.; Di Giampaolo, E. Wireless Passive RFID Crack Width Sensor for Structural Health Monitoring. IEEE Sens. J. 2015, 15, 6767–6774. [Google Scholar] [CrossRef] [Green Version]
- Jayawardana, D.; Kharkovsky, S.; Liyanapathirana, R.; Zhu, X. Measurement system with accelerometer integrated RFID tag for infrastructure health monitoring. IEEE Trans. Instrum. Meas. 2015, 65, 1163–1171. [Google Scholar] [CrossRef]
- Manoj, A.J.Y.D. Wireless Sensor System for Infrastructure Health Monitoring. Ph.D. Thesis, Western Sydney University, Sydney, Australia, 2017. [Google Scholar]
- Borgese, M.; Dicandia, F.A.; Costa, F.; Genovesi, S.; Manara, G. An Inkjet Printed Chipless RFID Sensor for Wireless Humidity Monitoring. IEEE Sens. J. 2017, 17, 4699–4707. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, I.; Huang, H. Monitoring fatigue crack growth and opening using antenna sensors. Smart Mater. Struct. 2010, 19, 055023. [Google Scholar] [CrossRef]
- Lee, J.J.; Fukuda, Y.; Shinozuka, M.; Cho, S.; Yun, C.B. Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures. Smart Struct. Syst. 2007, 3, 373–384. [Google Scholar] [CrossRef]
- Park, J.; Sim, S.; Jung, H.; Spencer, B.F., Jr. Development of a Wireless Displacement Measurement System Using Acceleration Responses. Sensors 2013, 13, 8377–8392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girbau, D.; Ramos, A.; Lazaro, A.; Rima, S.; Villarino, R. Passive Wireless Temperature Sensor Based on Time-Coded UWB Chipless RFID Tags. IEEE Trans. Microw. Theory Tech. 2012, 60, 3623–3632. [Google Scholar] [CrossRef]
- Liu, C.; Teng, J.; Wu, N. A Wireless Strain Sensor Network for Structural Health Monitoring. Shock. Vib. 2015, 2015, 740471. [Google Scholar] [CrossRef]
- Yi, X.; Cho, C.; Cooper, J.; Wang, Y.; Tentzeris, M.M.; Leon, R.T. Passive wireless antenna sensor for strain and crack sensing—electromagnetic modeling, simulation, and testing. Smart Mater. Struct. 2013, 22, 085009. [Google Scholar] [CrossRef]
- Mandel, C.; Kubina, B.; Schuessler, M.; Jakoby, R. Passive Chipless Wireless Sensor for Two-Dimensional Displacement Measurement. In Proceedings of the European Microwave Conference, Manchester, UK, 10–13 October 2011; pp. 79–82. [Google Scholar]
- Mohammad, I.; Huang, H. An Antenna Sensor for Crack Detection and Monitoring. Adv. Struct. Eng. 2011, 14, 47–53. [Google Scholar] [CrossRef]
- Lopato, P.; Herbko, M. A Circular Microstrip Antenna Sensor for Direction Sensitive Strain Evaluation. Sensors 2018, 18, 310. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Xu, K.; Xie, L.; Wan, G. Crack sensor based on patch antenna fed by capacitive microstrip lines. Smart Mater. Struct. 2019, 28, 085012. [Google Scholar] [CrossRef]
- Cook, J.D.; Marsh, B.J.; Qasimi, M.A.; Dixon, D.; Kumar, S. Wireless and Batteryless Sensor. U.S. Patent 12/239,363, 2 July 2009. [Google Scholar]
- Selker, E.J. Methods and Apparatus for Wireless RFID Cardholder Signature and Data Entry. U.S. Patent 7,100,835, 9 September 2006. [Google Scholar]
- Simons, R.N.; Miranda, F.A. Radio Frequency Telemetry System for Sensors and Actuators. U.S. Patent 6,667,725, 23 December 2003. [Google Scholar]
- Mita, A.; Takahira, S. Health Monitoring of Smart Structures Using Damage Index Sensors. In Proceedings of the SPIE’s 9th Annual International Symposium on Smart Structures and Materials, San Diego, CA, USA, 28 June 2002; pp. 92–100. [Google Scholar]
- Huang, H.; Zhao, P.; Chen, P.Y.; Ren, Y.; Liu, X.; Ferrari, M.; Hu, Y.; Akinwande, D. RFID Tag Helix Antenna Sensors for Wireless Drug Dosage Monitoring. IEEE J. Transl. Eng. Health Med. 2014, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Murphy, O.H.; McLeod, C.N.; Navaratnarajah, M.; Yacoub, M.; Toumazou, C. A pseudo-normal-mode helical antenna for use with deeply implanted wireless sensors. IEEE Trans. Antennas Propag. 2011, 60, 1135–1139. [Google Scholar] [CrossRef]
- Zogbi, S.W.; Canady, L.D.; Helffrich, J.A.; Cerwin, S.A.; Honeyager, K.S.; De Los Santos, A.; Catterson, C.B. Passive and Wireless Displacement Measuring Device. U.S Patent 6,656,135, 2 December 2003. [Google Scholar]
- Ong, J.B.; You, Z.; Mills-Beale, J.; Tan, E.L.; Pereles, B.D.; Ong, K.G. A Wireless, Passive Embedded Sensor for Real-Time Monitoring of Water Content in Civil Engineering Materials. IEEE Sens. J. 2008, 8, 2053–2058. [Google Scholar] [CrossRef]
- Ong, K.; Grimes, C.; Robbins, C.; Singh, R. Design and application of a wireless, passive, resonant-circuit environmental monitoring sensor. Sens. Actuators A Phys. 2001, 93, 33–43. [Google Scholar] [CrossRef]
- Labinac, V.; Erceg, N.; Kotnik-Karuza, D. Magnetic field of a cylindrical coil. Am. J. Phys. 2006, 74, 621–627. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
Parameters | (mm) | (mm) | (mm) | (mm) | Material | ||
---|---|---|---|---|---|---|---|
Dimensions | 35–57 | 2–3 | 22.5 | 0.5-1 | 17 | 15 | Copper wire |
Parameters | ||||||
---|---|---|---|---|---|---|
Dimensions | 18 | 2.25 | 4 | 16 | 3.25 | 4 |
Serial Number | ||||||||
---|---|---|---|---|---|---|---|---|
TH1 | 35.5 | 2 | 22.5 | 0.5 | 15 | 18 | 2.25 | 4 |
TH2 | 35.5 | 2 | 22.5 | 0.5 | 15 | 16 | 3.25 | 4 |
TH3 | 57 | 3 | 22.5 | 1 | 15 | 18 | 2.25 | 4 |
TH4 | 57 | 3 | 22.5 | 1 | 15 | 16 | 3.25 | 4 |
Serial Number | Sensitivity (MHz/mm) | Measuring Range (mm) | Correlation Coefficient of the Fitted Line |
---|---|---|---|
TH1 | 0.330 | 3.0 | 0.9500 |
TH2 | 0.267 | 3.0 | 0.9423 |
TH3 | 0.467 | 4.5 | 0.9665 |
TH4 | 0.500 | 4.0 | 0.9501 |
Serial Number | Experiment | Simulation | ||||
---|---|---|---|---|---|---|
Sensitivity (MHz/mm) | Measuring Range (mm) | Correlation Coefficient | Sensitivity (MHz/mm) | Measuring Range (mm) | Correlation Coefficient | |
TH1 | 0.712 | 3.5 | 0.9764 | 0.333 | 3 | 0.9500 |
TH2 | 0.400 | 4.9 | 0.9293 | 0.267 | 3 | 0.9423 |
TH3 | 1.600 | 3.5 | 0.9166 | 0.467 | 4.5 | 0.9665 |
TH4 | 0.650 | 7.7 | 0.9166 | 0.500 | 4 | 0.9501 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, S.; Yi, Z.; Xie, L.; Wan, G.; Ding, T. A Displacement Sensor Based on a Normal Mode Helical Antenna. Sensors 2019, 19, 3767. https://doi.org/10.3390/s19173767
Xue S, Yi Z, Xie L, Wan G, Ding T. A Displacement Sensor Based on a Normal Mode Helical Antenna. Sensors. 2019; 19(17):3767. https://doi.org/10.3390/s19173767
Chicago/Turabian StyleXue, Songtao, Zhuoran Yi, Liyu Xie, Guochun Wan, and Tao Ding. 2019. "A Displacement Sensor Based on a Normal Mode Helical Antenna" Sensors 19, no. 17: 3767. https://doi.org/10.3390/s19173767
APA StyleXue, S., Yi, Z., Xie, L., Wan, G., & Ding, T. (2019). A Displacement Sensor Based on a Normal Mode Helical Antenna. Sensors, 19(17), 3767. https://doi.org/10.3390/s19173767