Evaluation of ESA Active, Passive and Combined Soil Moisture Products Using Upscaled Ground Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Ground-Based Soil Moisture Measurements
- The Soil Moisture/Temperature Monitoring Network (SMTMN) was established over an area of 100 km × 100 km in the Central Tibetan Plateau (CTP), which is the highest plateau in the world and considered the ‘Third pole’. Over this site, 56 stations were installed to measure soil moisture and temperature at four soil depths (0–5, 10, 20, and 40 cm) and at 30 min temporal interval. Grass is the major vegetation with low biomass, and the variation of soil texture across the plateau leads to a large dynamic of soil moisture [39]. Considering the low penetrating depth of the microwave used to develop the ESA CCI soil moisture product, our study used probe-measured soil moisture at 0–5 cm depth. The probe measurements were calibrated in terms of soil texture as well as soil organic carbon content [40].
- The Red de Estaciones de Medición de la Humedad del Suelo (REMEDHUS) network is located within an area of 30 km × 40 km in the central semiarid of the Duero basin in Spain [41]. It has a semi-arid Mediterranean climate. The land is mainly covered by agricultural crops including cereals and vineyards [41]. This network contains 24 stations equipped with capacitance probes (Stevens Hydra Probe) installed horizontally at a depth of 5 cm.
- The Real-Time In-Situ Soil Monitoring for Agriculture (RISMA) soil moisture network distributes across Canada, with 12 stations in Manitoba, 4 stations in Saskatchewan and 6 stations in Ontario [42]. In this study, we selected Manitoba and Saskatchewan sites for test, they cover an area of around 15 km × 70 km and 10 km × 25 km, respectively. The Ontario site was disregarded, as the CCI pixel covered only a few stations. All stations were designed to record real dielectric permittivity, soil moisture and soil temperature using hydra probes at surface 0–5 cm, 5 cm, 20 cm and 50 cm, while some of these stations reached a deeper depth at 100 cm and 150 cm. At each depth, two or three hydra probe sensors were installed to capture the spatial variability in soil moisture, and to provide alternative measurements in the case of any sensor malfunction. Similarly, we extracted 0–5 cm soil moisture records from this network.
2.2. European Space Agency Climate Change Initiative (ESA CCI) Remotely Sensed Soil Moisture Products
2.3. Spatial Distribution of Global CCI Retrieved Soil Moisture
2.4. TRMM Precipitation
2.5. Collocation and Comparison Strategy
2.6. Upscaling Ground Measured Soil Moisture to Match the ESA CCI Products
2.7. Statistical Metric for Comparison
3. Results and Discussion
3.1. Central Tibetan Plateau Soil Moisture/Temperature Monitoring Network (CTP-SMTMN)
3.1.1. Characteristics of Soil Moisture Evolution over Time
3.1.2. Product Comparison Analysis
3.2. REMEDHUS Network
3.2.1. Characteristics of Soil Moisture Evolution over Time
3.2.2. Product Comparison Analysis
3.3. RISMA Network
3.3.1. Characteristics of Soil Moisture Evolution over Time
3.3.2. Product Comparison Analysis
3.4. Different Upscaling Effects
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Srivastava, P.; Petropoulos, G.; Kerr, Y.H. Satellite Soil Moisture Retrieval: Techniques and Applications; Elsevier: Cambridge, MA, USA, 2016. [Google Scholar]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Pauwels, V.R.N.; Verhoest, N.E.C.; De Lannoy, G.J.M.; Guissard, V.; Lucau, C.; Defourny, P. Optimization of a coupled hydrology–crop growth model through the assimilation of observed soil moisture and leaf area index values using an ensemble kalman filter. Water Resour. Res. 2007, 430, 244–247. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res. Atmos. 2007, 112, D17. [Google Scholar] [CrossRef]
- Jackson, T.J. Measuring surface soil moisture using passive microwave remote sensing. Hydrol. Process. 1993, 7, 139–152. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive, Vol. II-Radar Remote Sensing and Surface Scattering and Emission Theory; Addison Wesley Publishing Company, World Science Division: Norwood, MA, USA, 1982. [Google Scholar]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.; Neill, P.O.; Spencer, M.; Jackson, T.; Entin, J.; Im, E.; Kellogg, K. The Soil Moisture Active/Passive Mission (SMAP). In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; pp. 1–4. [Google Scholar]
- Entekhabi, D.; Yueh, S.; Neill, P.E.O.; Kellogg, K.H.; Allen, A.; Bindlish, R.; Brown, M.; Chan, S.; Colliander, A.; Crow, W.T.; et al. SMAP Handbook Soil Moisture Active Passive; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2014. [Google Scholar]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Lievens, H.; Reichle, R.H.; Liu, Q.; De Lannoy, G.J.M.; Dunbar, R.S.; Kim, S.B.; Das, N.N.; Cosh, M.; Walker, J.P.; Wagner, W. Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates. Geophys. Res. Lett. 2017, 44, 6145–6153. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Hans, B.; Figa-saldaña, J.; Anderson, C. Initial soil moisture retrievals from the METOP-A advanced scatterometer (ASCAT). Geophys. Res. Lett. 2007, 34, 20. [Google Scholar] [CrossRef]
- Naeimi, V.; Scipal, K.; Bartalis, Z.; Hasenauer, S.; Wagner, W. An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1999–2013. [Google Scholar] [CrossRef]
- Gloersen, P. Summary of the Status of the Nimbus-7 SMMR; Springer: New York, NY, USA, 1981. [Google Scholar]
- Paloscia, S.; Macelloni, G.; Santi, E.; Koike, T. A multifrequency algorithm for the retrieval of soil moisture on a large scale using microwave data from SMMR and SSM/I satellites. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1655–1661. [Google Scholar] [CrossRef]
- Bindlish, R.; Jackson, T.J.; Wood, E.; Gao, H.; Starks, P.; Bosch, D.; Lakshmi, V. Soil moisture estimates from TRMM microwave imager observations over the southern United States. Remote Sens. Environ. 2003, 85, 507–515. [Google Scholar] [CrossRef]
- Kawanishi, T.; Sezai, T.; Ito, Y.; Imaoka, K.; Takeshima, T.; Ishido, Y.; Shibata, A.; Miura, M.; Inahata, H.; Spencer, R.W. The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA’s contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens. 2003, 41, 184–194. [Google Scholar] [CrossRef]
- Gaiser, P.W.; Twarog, E.M.; Li, L.; St Germain, K.M.; Poe, G.A.; Purdy, W.; Jelenak, Z.; Chang, P.S.; Connor, L. The WindSat space borne polarimetric microwave radiometer: Sensor description and mission overview. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; p. 374. [Google Scholar]
- Imaoka, K.; Maeda, T.; Kachi, M.; Kasahara, M.; Ito, N.; Nakagawa, K. Status of AMSR2 instrument on GCOM-W1. In Proceedings Volume 8528, Earth Observing Missions and Sensors: Development, Implementation, and Characterization II, Proceedings of the SPIE Asia-Pacific Remote Sensing, Kyoto, Japan, 29 October–1 November 2012; International Society for Optics and Photonics: Bellingham, WA, USA, 2012; p. 15. [Google Scholar]
- Wagner, W.; Dorigo, W.; de Jeu, R.; Fernandez, D.; Benveniste, J.; Haas, E.; Ertl, M. Fusion of active and passive microwave observations to create an Essential Climate Variable data record for soil moisture. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, I-7, 315–321. [Google Scholar]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI soil moisture for improved earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; de Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; De Jeu, R.A.M.; Wagner, W.; van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef] [Green Version]
- González-Zamora, Á.; Sánchez, N.; Pablos, M.; Martínez-Fernández, J. CCI soil moisture assessment with SMOS soil moisture and in situ data under different environmental conditions and spatial scales in Spain. Remote Sens. Environ. 2018, 225, 469–482. [Google Scholar] [CrossRef]
- Pratola, C.; Barrett, B.; Gruber, A.; Dwyer, E. Quality assessment of the CCI ECV soil moisture product using ENVISAT ASAR wide swath data over Spain, Ireland and Finland. Remote Sens. 2015, 7, 15388–15423. [Google Scholar] [CrossRef]
- Ikonen, J.; Vehviläinen, J.; Rautiainen, K.; Smolander, T.; Lemmetyinen, J.; Bircher, S.; Pulliainen, J. The Sodankylä in situ soil moisture observation network: An example application of ESA CCI soil moisture product evaluation. Geosci. Instrum. Methods Data Syst. 2016, 5, 95–108. [Google Scholar] [CrossRef]
- An, R.; Zhang, L.; Wang, Z.; Quaye-Ballard, J.A.; You, J.; Shen, X.; Gao, W.; Huang, L.; Zhao, Y.; Ke, Z. Validation of the ESA CCI soil moisture product in China. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 28–36. [Google Scholar] [CrossRef]
- Peng, J.; Niesel, J.; Loew, A.; Zhang, S.; Wang, J. Evaluation of satellite and reanalysis soil moisture products over southwest China using ground-based measurements. Remote Sens. 2015, 7, 15729–15747. [Google Scholar] [CrossRef]
- Zeng, J.; Li, Z.; Chen, Q.; Bi, H.; Qiu, J.; Zou, P. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sens. Environ. 2015, 163, 91–110. [Google Scholar] [CrossRef]
- McNally, A.; Shukla, S.; Arsenault, K.R.; Wang, S.; Peters-Lidard, C.D.; Verdin, J.P. Evaluating ESA CCI soil moisture in East Africa. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 96–109. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.J.; Bindlish, R.; Cosh, M.H.; Zhao, T.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Moran, M.S.; Goodrich, D.C.; Kerr, Y.H.; et al. Validation of Soil Moisture and Ocean Salinity (SMOS) soil moisture over watershed networks in the U.S. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1530–1543. [Google Scholar] [CrossRef]
- Leroux, D.J.; Kerr, Y.H.; Bitar, A.A.; Bindlish, R.; Jackson, T.J.; Berthelot, B.; Portet, G. Comparison between SMOS, VUA, ASCAT, and ECMWF soil moisture products over four watersheds in U.S. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1562–1571. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; de Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Zhao, L.; Chen, Y.; Yang, K.; Yang, Y.; Chen, Z.; Lu, H. Inter-comparison of spatial upscaling methods for evaluation of satellite-based soil moisture. J. Hydrol. 2015, 523, 170–178. [Google Scholar] [CrossRef]
- Yang, K.; Qin, J.; Zhao, L.; Chen, Y.; Tang, W.; Han, M.; Lazhu; Chen, Z.; Lv, N.; Ding, B.; et al. A multiscale soil moisture and freeze–thaw monitoring network on The Third Pole. Bull. Am. Meteorol. Soc. 2013, 94, 1907–1916. [Google Scholar] [CrossRef]
- Xiao, Z.; Jiang, L.; Zhu, Z.; Wang, J.; Du, J. Spatially and temporally complete satellite soil moisture data based on a data assimilation method. Remote Sens. 2016, 8, 49. [Google Scholar] [CrossRef]
- Sanchez, N.; Martinez-Fernandez, J.; Scaini, A.; Perez-Gutierrez, C. Validation of the SMOS L2 soil moisture data in the REMEDHUS network (Spain). IEEE Trans. Geosci. Remote Sens. 2012, 50, 1602–1611. [Google Scholar] [CrossRef]
- Ojo, E.R.; Bullock, P.R.; L’Heureux, J.; Powers, J.; McNairn, H.; Pacheco, A. Calibration and evaluation of a frequency domain reflectometry sensor for real-time soil moisture monitoring. Vadose Zone J. 2015, 14, 1–12. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. Earth Surf. 2008, 113, 1–17. [Google Scholar] [CrossRef]
- Gruber, A.; Scanlon, T. ESA Climate Change Initiative Phase II-Soil Moisture Algorithm Theoretical Baseline Document (ATBD); Earth Observation Data Centre for Water Resources Monitoring: Vienna, Austria, 2018; pp. 1–87. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Tuttle, S.E.; Salvucci, G.D. A new approach for validating satellite estimates of soil moisture using large-scale precipitation: Comparing AMSR-E products. Remote Sens. Environ. 2014, 142, 207–222. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, J.; Zhu, A.X.; Sheng, M.; Duan, Z. Spatial distribution of diurnal rainfall variation in summer over China. J. Hydrometeorol. 2018, 19, 667–678. [Google Scholar] [CrossRef]
- McNairn, H.; Jackson, T.J.; Wiseman, G.; Belair, S.; Berg, A.; Bullock, P.; Colliander, A.; Cosh, M.H.; Kim, S.-B.; Magagi, R.; et al. The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch calibration and validation of the SMAP soil moisture algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2784–2801. [Google Scholar] [CrossRef]
- Bhuiyan, H.A.K.M.; McNairn, H.; Powers, J.; Friesen, M.; Pacheco, A.; Jackson, T.J.; Cosh, M.H.; Colliander, A.; Berg, A.; Rowlandson, T.; et al. Assessing SMAP soil moisture scaling and retrieval in the Carman (Canada) study site. Vadose Zone J. 2018, 17, 1–14. [Google Scholar] [CrossRef]
Networks | ubRMSE | RMSE | R | Bias | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | P | A | C | P | A | C | P | A | C | P | A | |
CTP-SMTMN | 0.034 | 0.066 | 0.039 | 0.059 | 0.093 | 0.074 | 0.856 | 0.831 | 0.865 | −0.049 | 0.066 | 0.062 |
REMEDHUS | 0.050 | 0.082 | 0.103 | 0.054 | 0.088 | 0.115 | 0.710 | 0.693 | 0.612 | −0.021 | 0.033 | −0.049 |
Manitoba | 0.054 | 0.076 | 0.093 | 0.060 | 0.165 | 0.145 | 0.420 | 0.449 | 0.330 | 0.026 | 0.146 | 0.111 |
Saskatchewan | 0.050 | 0.072 | 0.065 | 0.107 | 0.233 | 0.161 | 0.559 | 0.507 | 0.474 | 0.094 | 0.222 | 0.148 |
Networks | ubRMSE | RMSE | R | Bias | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | P | A | C | P | A | C | P | A | C | P | A | |
CTP-SMTMN | 0.033 | 0.067 | 0.039 | 0.058 | 0.095 | 0.075 | 0.858 | 0.830 | 0.866 | −0.048 | 0.067 | 0.063 |
REMEDHUS | 0.065 | 0.093 | 0.112 | 0.065 | 0.104 | 0.118 | 0.583 | 0.565 | 0.510 | −0.009 | 0.045 | −0.037 |
Manitoba | 0.055 | 0.076 | 0.094 | 0.059 | 0.160 | 0.141 | 0.413 | 0.446 | 0.323 | 0.021 | 0.141 | 0.106 |
Saskatchewan | 0.052 | 0.073 | 0.066 | 0.105 | 0.231 | 0.159 | 0.544 | 0.490 | 0.467 | 0.091 | 0.219 | 0.144 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Wang, H.; Tong, C.; Liu, W.; Du, B. Evaluation of ESA Active, Passive and Combined Soil Moisture Products Using Upscaled Ground Measurements. Sensors 2019, 19, 2718. https://doi.org/10.3390/s19122718
Zhu L, Wang H, Tong C, Liu W, Du B. Evaluation of ESA Active, Passive and Combined Soil Moisture Products Using Upscaled Ground Measurements. Sensors. 2019; 19(12):2718. https://doi.org/10.3390/s19122718
Chicago/Turabian StyleZhu, Luyao, Hongquan Wang, Cheng Tong, Wenbin Liu, and Benxu Du. 2019. "Evaluation of ESA Active, Passive and Combined Soil Moisture Products Using Upscaled Ground Measurements" Sensors 19, no. 12: 2718. https://doi.org/10.3390/s19122718
APA StyleZhu, L., Wang, H., Tong, C., Liu, W., & Du, B. (2019). Evaluation of ESA Active, Passive and Combined Soil Moisture Products Using Upscaled Ground Measurements. Sensors, 19(12), 2718. https://doi.org/10.3390/s19122718