Efficient Traffic Video Dehazing Using Adaptive Dark Channel Prior and Spatial–Temporal Correlations
Abstract
:1. Introduction
2. Related Works
3. Single-Image Dehazing Using Adaptive Dark Channel Prior
3.1. Framework of Single-Image Dehazing Method
- Step 1:
- Divide an input image into four rectangular regions.
- Step 2:
- Define the score of each region as the average pixel value subtracted from the standard deviation of the pixel values within the region.
- Step 3:
- Select the region with the highest score and divide it further into four smaller regions.
- Step 4:
- Repeat Steps 1 through Step 3 until the size of the selected region is smaller than a prespecified threshold. The prespecified threshold in this paper is 200, which is that the height * width of the selected region is smaller than 200.
3.2. Transmission Estimation for Enhancing the Contrast of Blocks
3.3. Adaptive Estimation of Initial Transmission
3.3.1. Calculating Image Haziness Flag
3.3.2. Correction of Initial Transmission
4. Adaptive Traffic Video Dehazing Method Using Spatial–Temporal Correlations
4.1. Time Continuity of Traffic Videos
4.2. Transmission Refinement Based on Spatial Structure
4.3. Lane Separation for Traffic Videos
- Calculate the global atmospheric light , the value of haziness flag , and the image contrast , then estimate the optimal transmission map for each block in an image.
- Get the driveway region, as shown in Figure 5.
- Step 1: Obtain the edge information in the video through edge detection.
- Step 2: Remove obviously wrong-angle lines by Hough linear fitting, and obtain lane candidates, as shown in Figure 5b.
- Step 3: Find the far left lane and the far right lane, and set them as the driveway boundaries, then find the intersection of these two lines, as shown in Figure 5c.
- Step 4: Identify a rectangular area as the driveway region, which is composed of the boundary of the image and a horizontal line across the intersection, as shown in Figure 5c. If the intersection is outside the image, take the whole image area as the driveway region.
- Use the original pixel values and the optimal transmission of driveway region in the dehazing model to restore the image in the driveway region.
4.4. Optimization Based on Spatial Distribution of Cameras
5. Results
5.1. Results for Single Image Dehazing
5.2. Results for Traffic Video Dehazing
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pyka, K. Wavelet-Based Local Contrast Enhancement for Satellite, Aerial and Close Range Images. Remote Sens. 2017, 9, 25. [Google Scholar] [CrossRef]
- Li, R.; Pan, J.; Li, Z.; Tang, J. Single Image Dehazing via Conditional Generative Adversarial Network. In Proceedings of the CVPR Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 July 2018; pp. 8202–8211. [Google Scholar]
- Mangeruga, M.; Bruno, F.; Cozza, M.; Agrafiotis, P.; Skarlatos, D. Guidelines for Underwater Image Enhancement Based on Benchmarking of Different Methods. Remote Sens. 2018, 10, 1652. [Google Scholar] [CrossRef]
- Oakley, J.P.; Satherley, B.L. Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Trans. Image Process. 1998, 7, 167–179. [Google Scholar] [CrossRef]
- Narasimhan, S.G.; Nayar, S.K. Removing weather effects from monochrome images. In Proceedings of the CVPR Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001; pp. 186–193. [Google Scholar]
- Chen, G.; Wang, T.; Zhou, H. A Novel Physics-based Method for Restoration of Foggy Day Images. J. Image Graph. 2008, 13, 888–893. [Google Scholar]
- Tan, R.T. Visibility in bad weather from a single image. In Proceedings of the CVPR Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Fattal, R. Single image dehazing. In Proceedings of the ACM Siggraph, Los Angeles, CA, USA, 11–15 August 2008; pp. 1–9. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. In Proceedings of the CVPR Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1956–1963. [Google Scholar]
- Lai, Y.; Chen, Y.; Chiou, C.; Hsu, C. Single-Image Dehazing via Optimal Transmission Map Under Scene Priors. Circuits Syst. Video Technol. 2015, 25, 1–14. [Google Scholar]
- Zhu, Q.; Mai, J.; Shao, L. A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar] [Green Version]
- Yeh, C.; Kang, L.; Lee, M.; Lin, C. Haze effect removal from image via haze density estimation in optical model. Opt. Express 2013, 21, 27127–27141. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, S.; Zheng, J.; Zheng, L. Single image haze removal using content-adaptive dark channel and post enhancement. IET Comput. Vis. 2014, 8, 131–140. [Google Scholar] [CrossRef]
- Wang, J.; He, N.; Zhang, L.; Lu, K. Single image dehazing with a physical model and dark channel prior. Neurocomputing 2015, 149, 718–728. [Google Scholar] [CrossRef]
- Huang, S.; Chen, B.; Wang, W. Visibility Restoration of Single Hazy Images Captured in Real-World Weather Conditions. IEEE Trans. Circuits Syst. Video Technol. 2014, 24, 1814–1824. [Google Scholar] [CrossRef]
- Riaz, I.; Fan, X.; Shin, H. Single image dehazing with bright object handling. IET Comput. Vis. 2016, 10, 817–827. [Google Scholar] [CrossRef]
- Sun, K.; Wang, B.; Zhou, Z. Real time image haze removal using bilateral filter. Trans. Beijing Inst. Technol. 2011, 31, 810–814. [Google Scholar]
- Wang, D.; Fan, J.; Liu, Y. A foggy video images enhancement algorithm of monitoring system. J. Xian Univ. Posts Telecommun. 2012, 5, TP391.41. [Google Scholar]
- Kumari, A.; Sahdev, S.; Sahoo, S.K. Improved single image and video dehazing using morphological operation. In Proceedings of the IEEE International Conference on VLSI Systems, Architecture, Technology and Applications, Bangalore, India, 8–10 January 2015; pp. 1–5. [Google Scholar]
- Berman, D.; Treibitz, T.; Avidan, S. Non-Local Image Dehazing. In Proceedings of the CVPR Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1674–1682. [Google Scholar]
- Berman, D.; Treibitz, T.; Avidan, S. Air-light Estimation using Haze-Lines. In Proceedings of the IEEE 13th International Conference on Intelligent Computer Communication and Processing, Stanford, CA, USA, 12–14 May 2017; pp. 5178–5191. [Google Scholar]
- Tarel, J.; Hautière, N.; Cord, A.; Gruyer, D.; Halmaoui, H. Improved visibility of road scene images under heterogeneous fog. In Proceedings of the IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 21–24 June 2010; pp. 478–485. [Google Scholar]
- Zhang, J.; Li, L.; Zhang, Y.; Yang, G.; Cao, X.; Sun, J. Video dehazing with spatial and temporal coherence. Vis. Comput. 2011, 27, 749–757. [Google Scholar] [CrossRef]
- Shin, D.K.; Kim, Y.M.; Park, K.T.; Lee, D.; Choi, W.; Moon, Y.S. Video dehazing without flicker artifacts using adaptive temporal average. In Proceedings of the IEEE International Symposium on Consumer Electronics, JeJu Island, Korea, 22–25 June 2014; pp. 1–2. [Google Scholar]
- Kim, J.; Jang, W.; Sim, J.Y.; Kim, C.S. Optimized contrast enhancement for real-time image and video dehazing. J. Vis. Commun. Image Represent. 2013, 24, 410–425. [Google Scholar] [CrossRef]
- Narasimhan, S.G.; Nayar, S.K. Vision and the Atmosphere. Int. J. Comput. Vis. 2002, 48, 233–254. [Google Scholar] [CrossRef]
- Pan, X.; Xie, F.; Jiang, Z.; Yin, J. Haze Removal for a Single Remote Sensing Image Based on Deformed Haze Imaging Model. IEEE Signal Process. Lett. 2015, 22, 1806–1810. [Google Scholar] [CrossRef]
- Peli, E. Contrast in complex images. J. Opt. Soc. Am. A 1990, 7, 2032–2040. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Levin, A.; Lischinski, D.; Weiss, Y. A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 30, 228–242. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Sun, J.; Tang, X. Guided image filtering. In Proceedings of the Springer ECCV European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; pp. 1–14. [Google Scholar]
- Szeliski, R. Computer Vision: Algorithms and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Foggy Road Image DAtabase FRIDA. Available online: http://www.lcpc.fr/english/products/image-databases/article/frida-foggy-road-image-database (accessed on 8 June 2012).
- Huang, S.; Chen, B.; Cheng, Y. An Efficient Visibility Enhancement Algorithm for Road Scenes Captured by Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2321–2332. [Google Scholar] [CrossRef]
- Patterson, D.A.; Hennessy, J.L. Computer Organization and Design: The Hardware/Software Interface; Morgan Kaufmann Publishers: Burlington, MA, USA, 1998. [Google Scholar]
- Chapman, B.; Jost, G.; van der Pas, R. Using OpenMP: Portable Shared Memory Parallel Programming (Scientific and Engineering Computation); MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
Image No. | T | C | T * C | X | The Range of T * C | X′ | T * X′ | T * X |
---|---|---|---|---|---|---|---|---|
1 | 0.4032 | 3.8224 | 1.5414 | 0.50 | T * C < 10 | 0.5 | 0.2016 | 0.2016 |
2 | 0.4006 | 6.3436 | 2.5410 | 0.52 | 0.5 | 0.2003 | 0.2083 | |
3 | 0.4177 | 8.4845 | 3.5437 | 0.50 | 0.5 | 0.2088 | 0.2088 | |
4 | 0.4113 | 13.4080 | 5.5151 | 0.50 | 0.5 | 0.2056 | 0.2057 | |
5 | 0.4329 | 13.2774 | 5.7476 | 0.46 | 0.5 | 0.2164 | 0.1991 | |
6 | 0.4444 | 17.6432 | 7.84004 | 0.46 | 0.5 | 0.2222 | 0.2044 | |
7 | 0.4211 | 19.7160 | 8.3039 | 0.52 | 0.5 | 0.2160 | 0.2190 | |
8 | 0.4584 | 22.1363 | 10.1480 | 0.54 | 10 ≤ T * C < 15 | 0.6 | 0.2750 | 0.2476 |
9 | 0.4275 | 25.5289 | 10.9141 | 0.64 | 0.6 | 0.2565 | 0.2736 | |
10 | 0.4732 | 26.9131 | 12.7346 | 0.62 | 0.6 | 0.2839 | 0.2934 | |
11 | 0.4370 | 31.9037 | 13.9419 | 0.76 | 0.6 | 0.2622 | 0.3321 | |
12 | 0.4862 | 31.3389 | 15.2359 | 0.66 | 15 ≤ T * C < 20 | 0.7 | 0.3403 | 0.3209 |
13 | 0.4469 | 38.3871 | 17.1555 | 0.84 | 0.7 | 0.3128 | 0.3754 | |
14 | 0.4987 | 35.6754 | 17.7904 | 0.62 | 0.7 | 0.3491 | 0.3092 | |
15 | 0.4555 | 44.9152 | 20.4609 | 0.80 | 20 ≤ T * C < 25 | 0.8 | 0.3644 | 0.3644 |
16 | 0.4625 | 50.9075 | 23.5422 | 0.86 | 0.8 | 0.3700 | 0.3977 | |
17 | 0.4724 | 57.3643 | 27.1012 | 0.94 | 25 ≤ T * C < 30 | 0.9 | 0.4252 | 0.4441 |
18 | 0.4812 | 63.6731 | 30.6395 | 1.00 | T * C ≥ 30 | 1.0 | 0.4812 | 0.4812 |
19 | 0.4909 | 70.3751 | 34.5454 | 1.06 | 1.0 | 0.4909 | 0.5203 |
Regions | Parameters | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|---|
Driveway Region | T | 0.590856 | 0.704105 | 0.839763 | 0.83898 |
contrast | 47.7547 | 49.0273 | 54.0312 | 62.208 | |
X′ | 0.90000 | 1.0000 | 1.0000 | 1.0000 | |
T * X’ | 0.53200 | 0.70400 | 0.8400 | 0.8390 | |
Global Image | T | 0.563265 | 0.632323 | 0.773405 | 0.563549 |
contrast | 48.8811 | 49.2619 | 57.5056 | 127.7800 | |
X’ | 0.9000 | 1.0000 | 1.0000 | 1.0000 | |
T * X’ | 0.5070 | 0.6320 | 0.7730 | 0.5660 |
Cases | Haze Flag Value T | Initial Transmission Correction Value X′ | Initial Transmission Value T * X′ |
---|---|---|---|
a | 0.524188 | 1 | 0.524 |
c | 0.580732 | 1 | 0.581 |
b | 0.569918 | 1 | 0.570 |
d | 0.517431 | 1 | 0.517 |
Image Resolution | Dark-Channel-Prior Method [9,31] | Visibility Enhancement Algorithm [34] | Image-Contrast-Enhanced Method [25] | Dehazing Only Using Adaptive Dark Channel Prior | Non-Local Image Dehazing [20,21] | Our Method |
---|---|---|---|---|---|---|
640 × 480 | 0.897 s | 1.014 s | 0.396 s | 0.506 s | 2.546 s | 0.433 s |
480 × 400 | 0.516 s | 0.895 s | 0.165 s | 0.301 s | 2.387 s | 0.252 s |
320 × 240 | 0.173 s | 0.348 s | 0.057 s | 0.262 s | 2.024 s | 0.211 s |
Case | Image Resolution | He et al. [9,31] | Kim et al. [25] | Our Method | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Time | fps | SSIM | Time | fps | SSIM | Time | fps | SSIM | ||
(1) | 640 × 480 | 66.787s | 15.0 | 0.6870 | 35.359 s | 28.3 | 0.6990 | 17.507 s | 57.1 | 0.7012 |
(2) | 640 × 480 | 64.576 s | 15.4 | 0.7002 | 34.471 s | 29.0 | 0.7079 | 18.005 s | 55.5 | 0.7232 |
(3) | 720 × 592 | 95.638 s | 10.5 | 0.6155 | 37.858 s | 26.4 | 0.6322 | 17.604 s | 56.8 | 0.6488 |
(4) | 720 × 592 | 90.911 s | 11.0 | 0.5932 | 39.855 s | 25.1 | 0.6011 | 16.925 s | 59.0 | 0.6155 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, T.; Zhao, G.; Wu, J.; Ye, Y.; Shen, Y. Efficient Traffic Video Dehazing Using Adaptive Dark Channel Prior and Spatial–Temporal Correlations. Sensors 2019, 19, 1593. https://doi.org/10.3390/s19071593
Dong T, Zhao G, Wu J, Ye Y, Shen Y. Efficient Traffic Video Dehazing Using Adaptive Dark Channel Prior and Spatial–Temporal Correlations. Sensors. 2019; 19(7):1593. https://doi.org/10.3390/s19071593
Chicago/Turabian StyleDong, Tianyang, Guoqing Zhao, Jiamin Wu, Yang Ye, and Ying Shen. 2019. "Efficient Traffic Video Dehazing Using Adaptive Dark Channel Prior and Spatial–Temporal Correlations" Sensors 19, no. 7: 1593. https://doi.org/10.3390/s19071593