Calibration of Laser Beam Direction for Inner Diameter Measuring Device
Abstract
:1. Introduction
2. Calibration Model
2.1. The Measurement Principle and Theoretical Mathematical Model
2.2. The Actual Mathematical Model
2.3. The Calibration Principle
3. Experiment
3.1. Calibration Experiment of Base Radius and Tangential Radius
- Step 1
- Install the inner diameter measuring device on the spindle of the machine tool and adjust the spindle position so that the measuring device was placed on the ring gauge inner side whose inner diameter is 275.029 mm and maintained the sensors within the measuring range;
- Step 2
- Set the rotating speed of machine tool spindle at 60 r/min; because the position accuracy of machine spindle is 0.002 mm, the spindle mechanical coordinate P1 was recorded as (x = 262.955, y = −275.502);
- Step 3
- The machine tool rotated the inner diameter measuring device; each sensor got minimum value and maximum value during this process. Record the maximum and minimum values of every sensor for each revolution;
- Step 4
- After completing the multi-circles data acquisition at P1, the spindle was adjusted to the center P0 of the ring gauge by using the hole center positioning method mentioned above and the coordinates of point P0 is recorded as (x = 262.833, y = −273.182). As shown in Figure 8 the sensors’ output waveform was a straight line when the spindle was moved to point P0 [26];
- Step 5
- Take the coordinates of point P1 and point P0 into Equation (9) so the value of oe is 2.3222 mm. Calculate the average maximum value and average minimum value of each sensor, then take them into Equations (10) and (11) to get base circle radius and tangential circle radius r.
3.2. Calibration Experiment of Laser Beams’ Angle
3.3. Verification Experiment
4. Sensor Raw Error
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Budak, I.; Vukelić, D.; Bračun, D.; Hodolič, J.; Soković, M. Pre-processing of point-data from contact and optical 3D digitization sensors. Sensors 2012, 12, 1100–1126. [Google Scholar] [CrossRef]
- Ko, T.J.; Park, J.W.; Kim, H.S.; Kim, S.H. On machine measurement using a noncontact sensor based on a CAD model. Int. J. Adv. Manuf. Technol. 2007, 32, 739–746. [Google Scholar] [CrossRef]
- Estler, W.T.; Edmundson, K.L.; Peggs, G.N.; Parker, D.H. Largescale metrology—An update. CIRP Ann. Manuf. Technol. 2002, 51, 587–609. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y. Research on 3D reconstruction procedure of marked points for large workpiece measurement. In Proceedings of the International Conference on Information Assurance and Security, Xi’an, China, 18–20 August 2009; pp. 273–276.
- Sudatham, W.; Matsumoto, H.; Takahashi, S.; Takamasu, K. Verification of the positioning accuracy of industrial coordinate measuring machine using optical-comb pulsed interferometer with a rough metal ball target. Precis. Eng. 2015, 41, 63–67. [Google Scholar] [CrossRef]
- Mansour, G. A developed algorithm for simulation of blades to reduce the measurement points and time on coordinate measuring machine. Measurement 2014, 54, 51–57. [Google Scholar] [CrossRef]
- Alblalaihid, K.; Kinnell, P.; Lawes, S.; Desgaches, D.; Leach, R. Performance assessment of a new variable stiffness probing system for micro-CMMs. Sensors 2016, 16, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mian, S.H.; Al-Ahmari, A. Enhance performance of inspection process on Coordinate Measuring Machine. Measurement 2014, 47, 78–91. [Google Scholar] [CrossRef]
- Li, R.-J.; Xiang, M.; He, Y.-X.; Fan, L.-C.; Cheng, Z.-Y.; Huang, Q.-X.; Zhou, B. Development of a high-precision touch-trigger probe using a single sensor. Appl. Sci. 2016, 6, 86. [Google Scholar] [CrossRef]
- He, B.-X.; Li, C.-L.; Li, J.-P.; Zhang, Y.; Liu, R.-L. Integration of intelligent measurement and detection for sealing rings used in aerospace systems. Opt. Precis. Eng. 2015, 12, 3395–3404. [Google Scholar]
- Shi, Y.; Sun, C.; Wang, P.; Wang, Z.; Duan, H. High-speed measurement algorithm for the position of holes in a large plane. Opt. Lasers Eng. 2012, 50, 1828–1835. [Google Scholar] [CrossRef]
- Kondo, Y.; Hasegawa, K.; Kawamata, H.; Morishita, T.; Naito, F. On-machine non-contact dimension-measurement system with laser displacement sensor for vane-tip machining of RFQs. Nucl. Instrum. Methods Phys. Res. A 2012, 667, 5–10. [Google Scholar] [CrossRef]
- Bi, C.; Liu, Y.; Fang, J.-G.; Guo, X.; Lv, L.-P.; Dong, P. Calibration of laser beam direction for optical coordinate measuring system. Measurement 2015, 73, 191–199. [Google Scholar]
- Sun, J.; Zhang, J.; Liu, Z.; Zhang, G. A vision measurement model of laser displacement sensor and its calibration method. Opt. Lasers Eng. 2013, 51, 1344–1352. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, X.; Chi, S. Simultaneous calibration of the intrinsic and extrinsic parameters of structured-light sensors. Opt. Lasers Eng. 2014, 58, 9–18. [Google Scholar] [CrossRef]
- Lee, R.T.; Shiou, F.J. Multi-beam laser probe for measuring position and orientation of freeform surface. Measurement 2011, 44, 1–10. [Google Scholar] [CrossRef]
- Yang, K.; Yu, H.-Y.; Yang, C. Calibration of line structured-light vision measurement system based on free-target. J. Mech. Electr. Eng. 2016, 33, 1066–1070. [Google Scholar]
- Xiong, H.-Y.; You, X.; Zong, Z.-J. Accurate extrinsic calibration method of a line structured-light sensor based on a standard ball. IET Image Process. 2011, 5, 369–374. [Google Scholar]
- Yu, Z.; Qiao, F.; Wang, Y. Calibration of Laser Displacement Sensor. J. Changchun Univ. Sci. Technol. 2013, 36, 32–34. [Google Scholar]
- Smith, K.B.; Zheng, Y.F. Optimal path planning for helical gear profile inspection with point laser triangulation probes. J. Manuf. Sci. Eng. 2001, 123, 90–98. [Google Scholar] [CrossRef]
- Smith, K.B.; Zheng, Y.F. Point laser triangulation probe calibration for coordinate metrology. J. Manuf. Sci. Eng. 2000, 122, 582–593. [Google Scholar] [CrossRef]
- Lu, K.Q.; Wang, W.; Chen, Z.C. Calibration of laser beam-direction for point laser sensor. Opt. Precis. Eng. 2010, 184, 880–886. (In Chinese) [Google Scholar]
- Zhou, H. Calibration of light beams direction of point light source probe. Chin. J. Sci. Instr. 2004, 253, 388–391. (In Chinese) [Google Scholar]
- Li, X.Q.; Wang, Z.; Fu, L.H. A Fast and in-Situ Measuring Method Using Laser Triangulation Sensors for the Parameters of the Connecting Rod. Sensors 2016, 16, 1679. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; He, M.; Wang, P. Laser Measurement Technology; Tianjin University Press: Tianjin, China, 2008; pp. 30–85. [Google Scholar]
- Wang, Z.; Su, Y.; Liu, X.; Liu, H. An Approximation Hole Center Positioning Method by Rotating Laser Displacement Sensor. Chin. J. Lasers 2012, 39, 0608001. [Google Scholar] [CrossRef]
- Schweighofer, G.; Prinz, A. Robust pose estimation from a planar target. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2024–2030. [Google Scholar] [CrossRef] [PubMed]
- Huang, S. The Picket Fence Effect in Precision Sampling and its Prevention. J. Sichuan Union Univ. 1997, 1, 91–94. [Google Scholar]
- Wu, Z.; Zeng, Z.; Li, X.; Wu, X. Non-Contact on-Machine Dihedral Angle Measurement Approach Based on Rotary Ray-Scanning Mechanism. Chin. J. Lasers 2016, 43, 187–194. (In Chinese) [Google Scholar]
- Qian, X.; Lu, X.; Zhong, L.; Huang, S. A novel method for improving measuring accuracy in laser triangle method. Laser J. 2000, 1, 035. [Google Scholar]
Sensor-1 | Sensor-2 | Snesor-3 | |
---|---|---|---|
7.0549 | 6.9256 | 5.7177 | |
2.4067 | 2.2804 | 1.073 | |
5.5484 | 2.5295 | 1.5262 | |
132.6718 | 132.8883 | 134.1108 |
Sensor-1 | Sensor-2 | Sensor-3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Number | Difference | Number | Difference | Number | Difference | Number | Difference | Number | Difference | Number | Difference |
312 | 327 | 639 | 332 | 88 | 330 | 418 | 331 | 531 | 332 | 199 | 327 |
971 | 329 | 1300 | 328 | 749 | 330 | 1079 | 329 | 1188 | 330 | 858 | 330 |
1628 | 329 | 1957 | 330 | 1408 | 330 | 1738 | 329 | 1847 | 329 | 1518 | 333 |
2287 | 329 | 2616 | 333 | 2067 | 332 | 2399 | 330 | 2511 | 331 | 2180 | 327 |
2949 | 326 | 3275 | 335 | 2729 | 327 | 3056 | 330 | 3170 | 332 | 2838 | 328 |
3610 | 327 | 3937 | 332 | 3386 | 331 | 3717 | 329 | 3831 | 333 | 3498 | 325 |
4269 | 326 | 4595 | 331 | 4046 | 331 | 4377 | 330 | 4489 | 333 | 4156 | 329 |
4926 | 330 | 5256 | 333 | 4707 | 329 | 5036 | 331 | 5148 | 330 | 4818 | 327 |
5589 | 327 | 5916 | 330 | 5367 | 327 | 5694 | 334 | 5808 | 333 | 5475 | 328 |
6246 | 331 | 6577 | 332 | 6028 | 328 | 6356 | 330 | 6468 | 332 | 6136 | 329 |
6909 | 328 | 7237 | 328 | 6686 | 329 | 7015 | 330 | 7128 | 331 | 6797 | 327 |
7565 | 329 | 7894 | 335 | 7345 | 330 | 7675 | 328 | 7788 | 333 | 7455 | 327 |
8229 | 325 | 8554 | 333 | 8003 | 333 | 8336 | 327 | 8446 | 331 | 8115 | 330 |
8887 | 328 | 9215 | 330 | 8663 | 332 | 8995 | 331 | 9106 | 330 | 8776 | 329 |
9545 | 330 | 9875 | 331 | 9326 | 326 | 9652 | 333 | 9766 | 331 | 9435 | 329 |
10,206 | 328 | 10,534 | 332 | 9985 | 326 | 10,311 | 334 | 10,420 | 325 | 10,095 | 335 |
10,866 | 326 | 11,192 | 336 | 10,645 | 329 | 10,974 | 331 | 11,085 | 330 | 10,755 | 331 |
11,528 | 327 | 11,855 | 11,305 | 330 | 11,635 | 11,746 | 330 | 11,416 | |||
Mean 328 | Mean 332 | Mean 329 | Mean 331 | Mean 331 | Mean 329 |
Value of Sensor-1 | Value of Sensor-2 | Value of Sensor-3 | Diameter | Error | |
---|---|---|---|---|---|
No.1 | 2.8743 | 6.3246 | 3.4249 | 275.021 | −0.0083 |
No.2 | 3.7568 | 1.5689 | 7.4925 | 275.039 | 0.0100 |
No.3 | 4.2155 | 3.5671 | 4.9925 | 275.028 | −0.0008 |
No.4 | 5.3617 | 2.8483 | 4.5986 | 275.036 | 0.0070 |
No.5 | 6.8716 | 4.6248 | 1.1909 | 275.044 | 0.0146 |
No.6 | 7.3256 | 2.7812 | 2.6612 | 275.036 | 0.0073 |
No.7 | 8.5649 | 3.2114 | 0.9164 | 275.043 | 0.0139 |
No.8 | 3.5188 | 5.2147 | 3.9581 | 275.022 | −0.0075 |
No.9 | 2.3544 | 8.5528 | 1.5436 | 275.023 | −0.0062 |
No.10 | 4.0126 | 3.5167 | 5.2671 | 275.042 | 0.0131 |
Laser Sensor | Laser Sensor | ID-0530 | Error | |
---|---|---|---|---|
Filter Data | Displacement | Displacement | ||
No. 1 | 0.0380 | 0 | ||
No. 2 | 0.9542 | 0.9162 | 0.9070 | −0.0092 |
No. 3 | 1.9071 | 1.8691 | 1.8655 | −0.0036 |
No. 4 | 2.9721 | 2.9341 | 2.9250 | −0.0091 |
No. 5 | 3.9751 | 3.9371 | 3.9375 | 0.0004 |
No. 6 | 4.9684 | 4.9304 | 4.9245 | −0.0059 |
No. 8 | 6.0211 | 5.9831 | 5.9850 | 0.0019 |
No. 9 | 7.0031 | 6.9651 | 6.9610 | −0.0041 |
No. 10 | 7.9963 | 7.9583 | 7.9595 | 0.0012 |
No. 11 | 8.9896 | 8.9516 | 8.9615 | 0.0099 |
No. 12 | 9.9365 | 9.8985 | 9.9015 | 0.0030 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Wang, Z.; Wu, Z.; Li, X.; Wang, L.; Liu, C. Calibration of Laser Beam Direction for Inner Diameter Measuring Device. Sensors 2017, 17, 294. https://doi.org/10.3390/s17020294
Yang T, Wang Z, Wu Z, Li X, Wang L, Liu C. Calibration of Laser Beam Direction for Inner Diameter Measuring Device. Sensors. 2017; 17(2):294. https://doi.org/10.3390/s17020294
Chicago/Turabian StyleYang, Tongyu, Zhong Wang, Zhengang Wu, Xingqiang Li, Lei Wang, and Changjie Liu. 2017. "Calibration of Laser Beam Direction for Inner Diameter Measuring Device" Sensors 17, no. 2: 294. https://doi.org/10.3390/s17020294