Assessing Band Sensitivity to Atmospheric Radiation Transfer for Space-Based Retrieval of Solar-Induced Chlorophyll Fluorescence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments of Simulation
Parameter | Value | Units | Description |
---|---|---|---|
LAI | 1, 2, 4, 6 | - | Leaf area index |
N | 1.5 | - | Leaf internal structure parameter |
Cab | 20, 40, 60, 80 | μg/cm2 | Leaf chlorophyll a + b content |
Cw | 0.025 | cm | Leaf water content |
Cm | 0.01 | mg/cm2 | Leaf dry matter content |
Fi | 0.02, 0.04 | - | Fluorescence quantum efficiency |
T | 20 | °C | Temperature |
Sto | 2 | - | Stoichiometry of PS II to PS I |
PAR b | 0.0035 | - | Electron transport resistance |
PAR re | 0.005 | - | Heat dissipation constant |
h | 0.1 | - | Hot-spot size parameter |
LIDF a, LIDF b | −0.5, 0.5 | - | Leaf inclination distribution function, abs(LIDFa) + abs(LIDFb) < 1, spherical (a = −0.35, b = −0.15), planophile (a = 1, b = 0) erectophile (a = −1, b = 0), plagiophile (a = 0, b = −1) extremophile (a = 0, b = 1), uniform (a = 0, b = 0) |
Parameters | Unit | Expected Value | Range |
---|---|---|---|
AP | - | MLS | TA, MLS, MLW, SAS, SAW, USS * |
AOD550 | - | 0.3 | 0.1–1.0 |
O3 | DU | 300 | 200–450 |
H2O | g∙cm−2 | 3 | 0.1–6 |
SZA | deg | 30 | 25–35 |
VZA | deg | 15 | 10–20 |
RAA | deg | 90 | 70–110 |
Elevation | m | 50 | 0–100 |
2.2. Selection of Potential Bands
Band Name | Absorption Depth | Wavelength (nm) | ||
---|---|---|---|---|
Left Shoulder | Center | Right Shoulder | ||
Hα | 81% | 654.36 | 656.46 | 657.90 |
K I | 42% | 770.02 | 770.12 | 770.20 |
Fe | 33% | 758.76 | 758.82 | 758.90 |
O2-A | 92% | 758.00 | 761.00 | 767.70 |
O2-B | 59% | 686.60 | 687.10 | 690.50 |
2.3. Fs Retrieval Methods
2.3.1. Space-Based Fs Retrieval Algorithm
2.3.2. Comparison of Fs Retrieval Methods
2.4. Analysis of the Sensitivity of Fs Retrieval to Atmospheric Radiative Transfer
3. Results
3.1. Sensitivity of Different Bands to Atmospheric Parameters and Imaging Geometric Parameters
3.2. Relationship between Retrieved Fs and Parameters Used in TOA Radiance Simulation
3.3. Errors in Fs Retrieval Based on Atmospheric Parameters with Currently Available Accuracy
4. Discussion
4.1. Assessment of Bands for Fs Retrieval
4.2. Uncertainty Analysis for Fs Retrieval
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Papageorgiou, G.C. Chlorophyll a Fluorescence: A Signature of Photosynthesis; Springer: Dordrecht, The Netherland, 2004. [Google Scholar]
- Krause, G.H.; Weis, E. Chlorophyll fluorescence and photosynthesis—The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42, 313–349. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Zarco-Tejada, P.J.; Miller, J.R.; Mohammed, G.H.; Noland, T.L.; Sampson, P.H. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery. J. Environ. Qual. 2002, 31, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Berry, J.A.; Frankenberg, C.; Huete, A.R.; Zarco-Tejada, P.; Lee, J.-E. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. USA 2014. [Google Scholar] [CrossRef]
- Meroni, M.; Rossini, M.; Guanter, L.; Alonso, L.; Rascher, U.; Colombo, R.; Moreno, J. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 2009, 113, 2037–2051. [Google Scholar] [CrossRef]
- Plascyk, J.A.; Gabriel, F.C. Fraunhofer line discriminator Mk II—Airborne instrument for precise and standardized ecological luminescence measurement. IEEE Trans. Instrum. Meas. 1975, 24, 306–313. [Google Scholar] [CrossRef]
- Maier, S.W.; Günther, K.P.; Stellmes, M. Sun-induced fluorescence: A new tool for precision farming. In Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology; McDonald, M., Schepers, J., Tartly, L., Toai, T., Major, D., Eds.; ASA Special Publication: Madison, WI, USA, 2003; pp. 209–222. [Google Scholar]
- Alonso, L.; Gomez-Chova, L.; Vila-Frances, J.; Amoros-Lopez, J.; Guanter, L.; Calpe, J.; Moreno, J. Improved Fraunhofer Line Discrimination method for vegetation fluorescence quantification. IEEE Geosci. Remote Sens. Lett. 2008, 5, 620–624. [Google Scholar] [CrossRef]
- Moya, I.; Camenen, L.; Evain, S.; Goulas, Y.; Cerovic, Z.G.; Latouche, G.; Flexas, J.; Ounis, A. A new instrument for passive remote sensing 1. Measurements of sunlight-induced chlorophyll fluorescence. Remote Sens. Environ. 2004, 91, 186–197. [Google Scholar] [CrossRef]
- Liu, L.Y.; Zhang, Y.J.; Wang, J.H.; Zhao, C.J. Detecting solar-induced chlorophyll fluorescence from field radiance spectra based on the Fraunhofer line principle. IEEE Trans. Geosci. Remote Sens. 2005, 43, 827–832. [Google Scholar] [CrossRef]
- Damm, A.; Elbers, J.A.N.; Erler, A.; Gioli, B.; Hamdi, K.; Hutjes, R.; Kosvancova, M.; Meroni, M.; Miglietta, F.; Moersch, A.; et al. Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Glob. Chang. Biol. 2010, 16, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Kraft, S.; Bello, U.D.; Drusch, M.; Gabriele, A. FLORIS: The fluorescence imaging spectrometer of the earth explorer mission candidate FLEX. In Proceedings of the 5th International Workshop on Remote Sensing of Vegetation Fluorescence, Paris, France, 22 May 2014.
- Moya, I.; Cerovic, Z.G. Remote sensing of chlorophyll fluorescence: Instrumentation and analysis. In Chlorophyll a Fluorescence; Springer: Dordrecht, The Netherland, 2004; pp. 429–445. [Google Scholar]
- Guanter, L.; Alonso, L.; Gómez-Chova, L.; Amorós-López, J.; Vila, J.; Moreno, J. Estimation of solar-induced vegetation fluorescence from space measurements. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
- Guanter, L.; Alonso, L.; Gómez-Chova, L.; Meroni, M.; Preusker, R.; Fischer, J.; Moreno, J. Developments for vegetation fluorescence retrieval from spaceborne high-resolution spectrometry in the O2-A and O2-B absorption bands. J. Geophys. Res. 2010. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Corp, L.A.; Middleton, E.M. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 2011, 8, 637–651. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, L. Retrieval of chlorophyll fluorescence from GOSAT-FTS data based on weighted least square fitting. J. Remote Sens. 2013, 17, 1518–1532. [Google Scholar]
- Frankenberg, C.; Butz, A.; Toon, G.C. Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2A-band spectra of reflected sun-light. Geophys. Res. Lett. 2011. [Google Scholar] [CrossRef]
- McFarlane, J.; Watson, R.; Theisen, A.; Jackson, R.D.; Ehrler, W.; Pinter, P., Jr.; Idso, S.B.; Reginato, R. Plant stress detection by remote measurement of fluorescence. Appl. Opt. 1980, 19, 3287–3289. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.A.; Theisen, A.F.; Mitchell, R.J. Chlorophyll fluorescence measured using the Fraunhofer line-depth principle and relationship to photosynthetic rate in the field. Plant Cell Environ. 1990, 13, 79–83. [Google Scholar] [CrossRef]
- Guanter, L.; Frankenberg, C.; Dudhia, A.; Lewis, P.E.; Gómez-Dans, J.; Kuze, A.; Suto, H.; Grainger, R.G. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 2012, 121, 236–251. [Google Scholar] [CrossRef]
- Damm, A.; Guanter, L.; Laurent, V.C.E.; Schaepman, M.E.; Schickling, A.; Rascher, U. FLD-based retrieval of sun-induced chlorophyll fluorescence from medium spectral resolution airborne spectroscopy data. Remote Sens. Environ. 2014, 147, 256–266. [Google Scholar] [CrossRef]
- Miller, J.R.; Berger, M.; Goulas, Y.; Jacquemoud, S.; Louis, J.; Moise, N.; Mohammed, G.; Moreno, J.; Moya, I.; Pedrós, R.; et al. Development of a vegetation fluorescence canopy model. In ESTEC Contract No. 16365/02/NL/FF, Final Report; ESA Scientific and Technical Publications Branch, ESTEC: Paris, France, 2005. [Google Scholar]
- Zarco-Tejada, P.J.; Miller, J.R.; Pedros, R.; Verhoef, W.; Berger, M. FluorMODgui V3.0: A graphic user interface for the spectral simulation of leaf and canopy chlorophyll fluorescence. Comput. Geosci. 2006, 32, 577–591. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.; Chetwynd, J.H.; Hoke, M.L.; et al. MODTRAN (TM) 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI; Shen, S.S., Lewis, P.E., Eds.; SPIE: Bellingham, WA, USA, 2005; pp. 662–667. [Google Scholar]
- Meroni, M.; Busetto, L.; Colombo, R.; Guanter, L.; Moreno, J.; Verhoef, W. Performance of spectral fitting methods for vegetation fluorescence quantification. Remote Sens. Environ. 2010, 114, 363–374. [Google Scholar] [CrossRef]
- Damm, A.; Erler, A.; Hillen, W.; Meroni, M.; Schaepman, M.E.; Verhoef, W.; Rascher, U. Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence. Remote Sens. Environ. 2011, 115, 1882–1892. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berni, J.A.J.; Suarez, L.; Sepulcre-Canto, G.; Morales, F.; Miller, J.R. Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sens. Environ. 2009, 113, 1262–1275. [Google Scholar] [CrossRef]
- Hosgood, J. The JRC Leaf Optical Properties Experiment (LOPEX’93) Report EUR-16096-EN; European Commission Joint Research Centre, Institute for Remote Sensing Application: Ispra, Italy, 1995. [Google Scholar]
- Guanter, L.; Richter, R.; Kaufmann, H. On the application of the MODTRAN4 atmospheric radiative transfer code to optical remote sensing. Int. J. Remote Sens. 2009, 30, 1407–1424. [Google Scholar] [CrossRef]
- Burrows, J.P.; Weber, M.; Buchwitz, M.; Rozanov, V.; Ladstätter-Weißenmayer, A.; Richter, A.; DeBeek, R.; Hoogen, R.; Bramstedt, K.; Eichmann, K.-U. The global ozone monitoring experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci. 1999, 56, 151–175. [Google Scholar] [CrossRef]
- Noël, S.; Buchwitz, M.; Burrows, J. First retrieval of global water vapour column amounts from SCIAMACHY measurements. Atmos. Chem. Phys. 2004, 4, 111–125. [Google Scholar] [CrossRef]
- Introduction of the MODIS Aerosol Product. Available online: http://modis-atmos.gsfc.nasa.gov/MOD04_L2/index.html (accessed on 15 July 2014).
- Meroni, M.; Colombo, R. Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer. Remote Sens. Environ. 2006, 103, 438–448. [Google Scholar] [CrossRef]
- Van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 3109–3129. [Google Scholar] [CrossRef]
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global concentrations of CO2 and CH4 retrieved from gosat: First preliminary results. Sola 2009, 5, 160–163. [Google Scholar] [CrossRef]
- Callies, J.; Corpaccioli, E.; Eisinger, M.; Hahne, A.; Lefebvre, A. GOME-2-Metop’s second-generation sensor for operational ozone monitoring. ESA Bull. 2000, 102, 28–36. [Google Scholar]
- Remer, L.A.; Kaufman, Y.; Tanré, D.; Mattoo, S.; Chu, D.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.; Kleidman, R. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Gao, B.C.; Kaufman, Y.J. Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. J. Geophys. Res.: Atmos. 2003. [Google Scholar] [CrossRef]
- Introduction of the MODIS Precipitable Water Product. Available online: http://modis-atmos.gsfc.nasa.gov/MOD05_L2/index.html (accessed on 15 July 2014).
- Levelt, P.F.; van den Oord, G.H.; Dobber, M.R.; Malkki, A.; Visser, H.; de Vries, J.; Stammes, P.; Lundell, J.O.; Saari, H. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- OMI Products Overview. Available online: http://www.knmi.nl/omi/research/product/index.php (accessed on 15 July 2014).
- Balis, D.; Kroon, M.; Koukouli, M.; Brinksma, E.; Labow, G.; Veefkind, J.; McPeters, R. Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations. J. Geophys. Res.: Atmos. 2007. [Google Scholar] [CrossRef]
- Grainger, J.; Ring, J. Anomalous Fraunhofer line profiles. Nature 1962. [Google Scholar] [CrossRef]
- Chance, K.V.; Spurr, R.J. Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. Appl. Opt. 1997, 36, 5224–5230. [Google Scholar] [CrossRef] [PubMed]
- Joiner, J.; Bhartia, P.K.; Cebula, R.P.; Hilsenrath, E.; McPeters, R.D.; Park, H. Rotational Raman scattering (Ring effect) in satellite backscatter ultraviolet measurements. Appl. Opt. 1995, 34, 4513–4525. [Google Scholar] [CrossRef] [PubMed]
- Vountas, M.; Rozanov, V.; Burrows, J. Ring effect: Impact of rotational Raman scattering on radiative transfer in Earth’s atmosphere. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 943–961. [Google Scholar] [CrossRef]
- Vasilkov, A.; Joiner, J.; Spurr, R. Note on rotational-Raman scattering in the O2 A- and B-bands. Atmos. Meas. Tech. 2013, 6, 981–990. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Liu, L. Assessing Band Sensitivity to Atmospheric Radiation Transfer for Space-Based Retrieval of Solar-Induced Chlorophyll Fluorescence. Remote Sens. 2014, 6, 10656-10675. https://doi.org/10.3390/rs61110656
Liu X, Liu L. Assessing Band Sensitivity to Atmospheric Radiation Transfer for Space-Based Retrieval of Solar-Induced Chlorophyll Fluorescence. Remote Sensing. 2014; 6(11):10656-10675. https://doi.org/10.3390/rs61110656
Chicago/Turabian StyleLiu, Xinjie, and Liangyun Liu. 2014. "Assessing Band Sensitivity to Atmospheric Radiation Transfer for Space-Based Retrieval of Solar-Induced Chlorophyll Fluorescence" Remote Sensing 6, no. 11: 10656-10675. https://doi.org/10.3390/rs61110656