Dual-Domain Cooperative Recovery of Atmospheric Turbulence Degradation Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Atmospheric Turbulence Imaging Model
2.2. The Structure of Network
2.2.1. Res FFT-GeLU Block
2.2.2. Overall Architecture
2.2.3. The Implementation of DDRTNet
3. Results and Discussion
3.1. The Test of Image Restoration in Simulation
3.2. Ablation
3.3. The Robustness of DDRTNet on Different Noises
3.4. The Performance of DeturNet on Different Turbulences
3.5. Outdoor Experiment Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lau, C.P.; Lai, Y.H.; Lui, L.M. Restoration of atmospheric turbulence-distorted images via RPCA and quasiconformal maps. Inverse Probl. 2019, 35, 074002. [Google Scholar] [CrossRef]
- Fante, R.L. Electromagnetic beam propagation in turbulent media. Proc. IEEE 1975, 63, 1669–1692. [Google Scholar] [CrossRef]
- Hufnagel, R.; Stanley, N. Modulation transfer function associated with image transmission through turbulent media. JOSA 1964, 54, 52–61. [Google Scholar] [CrossRef]
- Halder, K.K.; Tahtali, M.; Anavatti, S.G. Geometric correction of atmospheric turbulence-degraded video containing moving objects. Opt. Express 2015, 23, 5091–5101. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Li Qy, Z.Q. Research on influence of atmospheric turbulence parameters on image degradation. J. Chang. Univ. Sci. Technol. Nat. Sci. Ed. 2018, 41, 95–99. [Google Scholar]
- Cheng, J.; Li, J.; Dai, C.; Ren, Y.; Xu, G.; Li, S.; Chen, X.; Zhu, W. Research on atmospheric turbulence-degraded image restoration based on generative adversarial networks. In Proceedings of the First International Conference on Spatial Atmospheric Marine Environmental Optics (SAME 2023), Shanghai, China, 7–9 April 2023; Volume 12706, pp. 37–44. [Google Scholar]
- Huang, T.; Li, S.; Jia, X.; Lu, H.; Liu, J. Neighbor2neighbor: Self-supervised denoising from single noisy images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14781–14790. [Google Scholar]
- Cheng, S.; Wang, Y.; Huang, H.; Liu, D.; Fan, H.; Liu, S. Nbnet: Noise basis learning for image denoising with subspace projection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4896–4906. [Google Scholar]
- Kupyn, O.; Budzan, V.; Mykhailych, M.; Mishkin, D.; Matas, J. Deblurgan: Blind motion deblurring using conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8183–8192. [Google Scholar]
- Tao, X.; Gao, H.; Shen, X.; Wang, J.; Jia, J. Scale-recurrent network for deep image deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8174–8182. [Google Scholar]
- Guo, Y.; Chen, J.; Wang, J.; Chen, Q.; Cao, J.; Deng, Z.; Xu, Y.; Tan, M. Closed-loop matters: Dual regression networks for single image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5407–5416. [Google Scholar]
- Liu, J.; Zhang, W.; Tang, Y.; Tang, J.; Wu, G. Residual feature aggregation network for image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2359–2368. [Google Scholar]
- Rigaut, F.; Ellerbroek, B.L.; Northcott, M.J. Comparison of curvature-based and Shack–Hartmann-based adaptive optics for the Gemini telescope. Appl. Opt. 1997, 36, 2856–2868. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, D.; Fergus, R. Fast image deconvolution using hyper-Laplacian priors. Adv. Neural Inf. Process. Syst. 2009, 22, 1033–1041. [Google Scholar]
- Mei, K.; Patel, V.M. Ltt-gan: Looking through turbulence by inverting gans. IEEE J. Sel. Top. Signal Process. 2023, 17, 587–598. [Google Scholar] [CrossRef]
- Cai, Z.; Zhong, Z.; Zhang, B. High-resolution restoration of solar images degraded by atmospheric turbulence effect using improved CycleGAN. New Astron. 2023, 101, 102018. [Google Scholar] [CrossRef]
- López-Tapia, S.; Wang, X.; Katsaggelos, A.K. Variational Deep Atmospheric Turbulence Correction for Video. In Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8–11 October 2023; pp. 3568–3572. [Google Scholar]
- Hill, P.; Anantrasirichai, N.; Achim, A.; Bull, D. Atmospheric Turbulence Removal with Video Sequence Deep Visual Priors. arXiv 2024, arXiv:2402.19041. [Google Scholar]
- Zhang, X.; Mao, Z.; Chimitt, N.; Chan, S.H. Imaging through the atmosphere using turbulence mitigation transformer. IEEE Trans. Comput. Imaging 2024, 10, 115–128. [Google Scholar] [CrossRef]
- Wang, X.; López-Tapia, S.; Katsaggelos, A.K. Real-World Atmospheric Turbulence Correction via Domain Adaptation. arXiv 2024, arXiv:2402.07371. [Google Scholar]
- Siddik, A.B.; Sandoval, S.; Voelz, D.; Boucheron, L.E.; Varela, L. Estimation of modified Zernike coefficients from turbulence-degraded multispectral imagery using deep learning. Appl. Opt. 2024, 63, E28–E34. [Google Scholar] [CrossRef]
- Zhang, X.; Chimitt, N.; Chi, Y.; Mao, Z.; Chan, S.H. Spatio-Temporal Turbulence Mitigation: A Translational Perspective. arXiv 2024, arXiv:2401.04244. [Google Scholar]
- Duan, L.; Zhong, L.; Zhang, J. Turbulent image deblurring using a deblurred blur kernel. J. Opt. 2024, 26, 065702. [Google Scholar] [CrossRef]
- Sineglazov, V.; Lesohorskyi, K.; Chumachenko, O. Faster Image Deblurring for Unmanned Aerial Vehicles. In Proceedings of the 2024 2nd International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 12–14 February 2024; pp. 1–6. [Google Scholar]
- Guo, Y.; Wu, X.; Qing, C.; Liu, L.; Yang, Q.; Hu, X.; Qian, X.; Shao, S. Blind Restoration of a Single Real Turbulence-Degraded Image Based on Self-Supervised Learning. Remote Sens. 2023, 15, 4076. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, W.; Ning, X.; Liu, H.; Zhang, P.; Zhang, J. Turbulence Aberration Restoration Based on Light Intensity Image Using GoogLeNet. Photonics 2023, 10, 265. [Google Scholar] [CrossRef]
- Saha, R.K.; Qin, D.; Li, N.; Ye, J.; Jayasuriya, S. Turb-Seg-Res: A Segment-then-Restore Pipeline for Dynamic Videos with Atmospheric Turbulence. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–21 June 2024; pp. 25286–25296. [Google Scholar]
- Anantrasirichai, N. Atmospheric turbulence removal with complex-valued convolutional neural network. Pattern Recognit. Lett. 2023, 171, 69–75. [Google Scholar] [CrossRef]
- Jiang, W.; Boominathan, V.; Veeraraghavan, A. Nert: Implicit neural representations for general unsupervised turbulence mitigation. arXiv 2023, arXiv:2308.00622. [Google Scholar]
- Xu, S.; Cao, S.; Liu, H.; Xiao, X.; Chang, Y.; Yan, L. 1st Solution Places for CVPR 2023 UG2+ Challenge Track 2.2-Coded Target Restoration through Atmospheric Turbulence. arXiv 2023, arXiv:2306.09379. [Google Scholar]
- Zhang, S.; Rao, P.; Chen, X. Blind turbulent image deblurring through dual patch-wise pixels prior. Opt. Eng. 2023, 62, 033104. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Wei, W.; Zhong, X.; Ma, H.; Chu, J. A DeturNet-Based Method for Recovering Images Degraded by Atmospheric Turbulence. Remote Sens. 2023, 15, 5071. [Google Scholar] [CrossRef]
- Jaiswal, A.; Zhang, X.; Chan, S.H.; Wang, Z. Physics-driven turbulence image restoration with stochastic refinement. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 12170–12181. [Google Scholar]
- Mao, Z.; Jaiswal, A.; Wang, Z.; Chan, S.H. Single frame atmospheric turbulence mitigation: A benchmark study and a new physics-inspired transformer model. In Proceedings of the European Conference on Computer Vision, Aviv, Israel, 23–27 October 2022; pp. 430–446. [Google Scholar]
- Mao, Z.; Chimitt, N.; Chan, S.H. Image reconstruction of static and dynamic scenes through anisoplanatic turbulence. IEEE Trans. Comput. Imaging 2020, 6, 1415–1428. [Google Scholar] [CrossRef]
- Gonzales, R.C.; Woods, R.E. Digital Image Processing; Pearson: New York, NY, USA, 2010. [Google Scholar]
- Huang, J.; Liu, Y.; Zhao, F.; Yan, K.; Zhang, J.; Huang, Y.; Zhou, M.; Xiong, Z. Deep fourier-based exposure correction network with spatial-frequency interaction. In Proceedings of the European Conference on Computer Vision, Aviv, Israel, 23–27 October 2022; pp. 163–180. [Google Scholar]
- Mao, X.; Liu, Y.; Shen, W.; Li, Q.; Wang, Y. Deep residual fourier transformation for single image deblurring. arXiv 2021, arXiv:2111.11745. [Google Scholar]
- Li, C.; Guo, C.L.; Zhou, M.; Liang, Z.; Zhou, S.; Feng, R.; Loy, C.C. Embedding fourier for ultra-high-definition low-light image enhancement. arXiv 2023, arXiv:2302.11831. [Google Scholar]
- Guo, S.; Yong, H.; Zhang, X.; Ma, J.; Zhang, L. Spatial-frequency attention for image denoising. arXiv 2023, arXiv:2302.13598. [Google Scholar]
- He, X.; Yan, K.; Li, R.; Xie, C.; Zhang, J.; Zhou, M. Pyramid Dual Domain Injection Network for Pan-sharpening. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 12908–12917. [Google Scholar]
- Lu, L.; Liu, T.; Jiang, F.; Han, B.; Zhao, P.; Wang, G. DFANet: Denoising Frequency Attention Network for Building Footprint Extraction in Very-High-Resolution Remote Sensing Images. Electronics 2023, 12, 4592. [Google Scholar] [CrossRef]
- Yang, K.; Hu, T.; Dai, K.; Chen, G.; Cao, Y.; Dong, W.; Wu, P.; Zhang, Y.; Yan, Q. CRNet: A Detail-Preserving Network for Unified Image Restoration and Enhancement Task. arXiv 2024, arXiv:2404.14132. [Google Scholar]
- Yuan, X.; Li, L.; Wang, J.; Yang, Z.; Lin, K.; Liu, Z.; Wang, L. Spatial-Frequency U-Net for Denoising Diffusion Probabilistic Models. arXiv 2023, arXiv:2307.14648. [Google Scholar]
- Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In Proceedings of the International Conference on Machine Learning, PMLR, Baltimore, MD, USA, 17–23 July 2022; pp. 27268–27286. [Google Scholar]
- Patro, B.N.; Namboodiri, V.P.; Agneeswaran, V.S. SpectFormer: Frequency and Attention is what you need in a Vision Transformer. arXiv 2023, arXiv:2304.06446. [Google Scholar]
- Li, D.; Simske, S. Atmospheric turbulence degraded-image restoration by kurtosis minimization. IEEE Geosci. Remote Sens. Lett. 2009, 6, 244–247. [Google Scholar]
- Roggemann, M.C.; Welsh, B.M. Imaging through Turbulence; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415. [Google Scholar]
- Mao, X.; Liu, Y.; Liu, F.; Li, Q.; Shen, W.; Wang, Y. Intriguing findings of frequency selection for image deblurring. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 1905–1913. [Google Scholar]
- Lu, L.; Shin, Y.; Su, Y.; Karniadakis, G.E. Dying relu and initialization: Theory and numerical examples. arXiv 2019, arXiv:1903.06733. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin, Germany, 2015; pp. 234–241. [Google Scholar]
- Fazlali, H.; Shirani, S.; BradforSd, M.; Kirubarajan, T. Atmospheric turbulence removal in long-range imaging using a data-driven-based approach. Int. J. Comput. Vis. 2022, 130, 1031–1049. [Google Scholar] [CrossRef]
- Cui, Y.; Knoll, A. Dual-domain strip attention for image restoration. Neural Netw. 2024, 171, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Ren, W.; Knoll, A. Omni-Kernel Network for Image Restoration. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; Volume 38, pp. 1426–1434. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Mao, Z.; Chimitt, N.; Chan, S.H. Accelerating atmospheric turbulence simulation via learned phase-to-space transform. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 14759–14768. [Google Scholar]
- Cui, Y.; Ren, W.; Cao, X.; Knoll, A. Image Restoration via Frequency Selection. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 46, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H.; Shao, L. Learning enriched features for fast image restoration and enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 1934–1948. [Google Scholar] [CrossRef]
- Chen, L.; Chu, X.; Zhang, X.; Sun, J. Simple baselines for image restoration. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 17–33. [Google Scholar]
- HKT Heat Haze. Available online: https://www.youtube.com/watch?v=oF3x1BsQir8/ (accessed on 18 June 2024).
- PENTAX PAIR II Fog&Heat Haze Reduction DEMO. Available online: https://www.youtube.com/watch?v=D-xNKZyKjFc/ (accessed on 18 June 2024).
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2012, 20, 209–212. [Google Scholar] [CrossRef]
Degraded | MIRNet | NAFNet | FSNet | DDRTNet | |
---|---|---|---|---|---|
PSNR ↑ | 24.54 | 25.26 | 24.98 | 25.23 | 26.28 |
SSIM ↑ | 0.7149 | 0.7654 | 0.7610 | 0.7723 | 0.8061 |
NRMSE ↓ | 0.1297 | 0.1240 | 0.1281 | 0.1207 | 0.1118 |
PSNR_td ↓ | 12.0471 | 13.2617 | 13.1166 | 13.5189 | 14.7575 |
SSIM_td ↓ | 0.01479 | 0.01141 | 0.01136 | 0.01031 | 0.00853 |
Index/Unit | MIRNet | NAFNet | FSNet | DDRTNet |
---|---|---|---|---|
FLOPs/G | 19.88 | 140.75 | 59.71 | 34.63 |
Params/MB | 29.2 | 5.8 | 7.0 | 7.0 |
Time/ms | 123.801 | 120.806 | 92.851 | 62.902 |
Method | ReLU | RFGB | DSAM | OKM | PSNR | SSIM |
---|---|---|---|---|---|---|
✓ | ✓ | ✓ | ✓ | 25.92 | 0.7981 | |
✗ | ✗ | ✓ | ✓ | 25.97 | 0.7964 | |
DDRTNet | ✗ | ✓ | ✗ | ✓ | 25.87 | 0.7942 |
✗ | ✓ | ✓ | ✗ | 25.34 | 0.7648 | |
✗ | ✓ | ✓ | ✓ | 26.28 | 0.8061 |
Var = 0 | Var = 0.09 | Var = 0.16 | Var = 0.25 | Var = 0.36 | ||
---|---|---|---|---|---|---|
Noise test | PSNR | 24.5861 | 24.5830 | 24.5794 | 24.5758 | 24.5721 |
sets | SSIM | 0.7131 | 0.7125 | 0.7117 | 0.7109 | 0.7101 |
Recovery | PSNR | 26.2832 | 26.1369 | 25.9011 | 25.7171 | 25.5145 |
results | SSIM | 0.8061 | 0.8018 | 0.7942 | 0.7888 | 0.7817 |
Degraded | Our | Degraded | Our | Degraded | Our | |
---|---|---|---|---|---|---|
PSNR | 27.48 | 31.70 | 24.54 | 26.28 | 23.74 | 24.48 |
SSIM | 0.8332 | 0.9366 | 0.7149 | 0.8061 | 0.6739 | 0.7405 |
Degraded | NAFNet | MIRNet | FSNet | DDRTNet | |
---|---|---|---|---|---|
Entropy ↑ | 6.0399 | 6.1034 | 6.1057 | 6.1139 | 6.1284 |
AG ↑ | 1.2478 | 1.7810 | 1.7149 | 1.7984 | 2.1132 |
NIQE ↓ | 9.1128 | 7.5898 | 7.7245 | 7.6107 | 7.0817 |
LG ↑ | 12.0088 | 45.0503 | 35.2508 | 30.7535 | 50.7452 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, J.; Jiang, R.; Meng, W.; Shi, D.; Hu, B.; Wang, Y. Dual-Domain Cooperative Recovery of Atmospheric Turbulence Degradation Images. Remote Sens. 2024, 16, 2972. https://doi.org/10.3390/rs16162972
Qiu J, Jiang R, Meng W, Shi D, Hu B, Wang Y. Dual-Domain Cooperative Recovery of Atmospheric Turbulence Degradation Images. Remote Sensing. 2024; 16(16):2972. https://doi.org/10.3390/rs16162972
Chicago/Turabian StyleQiu, Jianxiao, Runbo Jiang, Wenwen Meng, Dongfeng Shi, Bingzhang Hu, and Yingjian Wang. 2024. "Dual-Domain Cooperative Recovery of Atmospheric Turbulence Degradation Images" Remote Sensing 16, no. 16: 2972. https://doi.org/10.3390/rs16162972
APA StyleQiu, J., Jiang, R., Meng, W., Shi, D., Hu, B., & Wang, Y. (2024). Dual-Domain Cooperative Recovery of Atmospheric Turbulence Degradation Images. Remote Sensing, 16(16), 2972. https://doi.org/10.3390/rs16162972