Kriging Interpolation for Constructing Database of the Atmospheric Refractivity in Korea
Abstract
:1. Introduction
2. Variogram Model Design for the Kriging Interpolation
3. Data Normalization of the Atmospheric Refractive Index
4. Kriging Interpolation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Locker, C.; Vaupel, T.; Eibert, T.F. Radiation efficient unidirectional low-profile slot antenna elements for X-band application. IEEE Trans. Antennas Propag. 2005, 53, 2765–2768. [Google Scholar] [CrossRef]
- Dastkhosh, A.R.; Oskouei, H.D.; Khademevatan, G. Compact low weight high gain broadband antenna by polarization-rotation technique for X-band radar. Int. J. Antennas Propag. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, T.; Hu, R.; Su, H.; Liu, Y.; Liu, X.; Suo, J.; Snoussi, H. Multiple kernelized correlation filters (MKCF) for extended object tracking using X-band marine radar data. IEEE Trans. Signal Process. 2019, 67, 3676–3688. [Google Scholar] [CrossRef]
- Wang, A.; Krishnamurthy, V. Signal interpretation of multifunction radars: Modeling and statistical signal processing with Stochastic Context Free Grammar. IEEE Trans. Signal Process. 2008, 56, 1106–1119. [Google Scholar] [CrossRef]
- Wang, S.; Jang, D.; Kim, Y.; Choo, H. Design of S/X-Band dual-loop shared-aperture 2 × 2 array antenna. J. Electromagn. Eng. Sci. 2022, 22, 319–325. [Google Scholar] [CrossRef]
- Lim, T.H.; Go, M.; Seo, C.; Choo, H. Analysis of the target detection performance of Air-to-Air airborne radar using long-range propagation simulation in abnormal atmospheric conditions. Appl. Sci. 2020, 10, 6440. [Google Scholar] [CrossRef]
- Lim, T.; Choo, H. Prediction of target detection probability based on air-to-air long-range scenarios in anomalous atmospheric environments. Remote Sens. 2021, 13, 3943. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, L. Photonic-radar based multiple-target tracking under complex traffic-environments. IEEE Access 2020, 8, 225845–225856. [Google Scholar] [CrossRef]
- Kim, I.; Kim, H.; Lee, J.-H. Theoretical minimum detection range for a rapidly moving target and an experimental evaluation. J. Electromagn. Eng. Sci. 2021, 21, 161–164. [Google Scholar] [CrossRef]
- Tedesco, M.; Wang, J.R. Atmospheric correction of AMSR-E brightness temperatures for dry snow cover mapping. IEEE Geosci. Remote Sens. Lett. 2006, 3, 320–324. [Google Scholar] [CrossRef]
- Wang, J.R.; Racette, P.; Triesky, M.E.; Browell, E.V.; Ismail, S.; Chang, L.A. Profiling of atmospheric water vapor with MIR and LASE. IEEE Geosci. Remote Sens. Lett. 2002, 40, 1211–1219. [Google Scholar] [CrossRef]
- Birkemeier, W.P.; Duvosin, P.F.; Fontaine, A.B.; Thomson, D.W. Indirect atmospheric measurements utilizing rake tropospheric scatter techniques—Part II: Radiometeorological interpretation of rake channel-sounding observations. Proc. IEEE 1969, 57, 552–559. [Google Scholar] [CrossRef]
- Wang, S.; Lim, T.H.; Oh, K.; Seo, C.; Choo, H. Prediction of wide range two-dimensional refractivity using an IDW interpolation method from high-altitude refractivity data of multiple meteorological observatories. Appl. Sci. 2021, 11, 1431. [Google Scholar] [CrossRef]
- S.-Rama, B.; Lopez, R.N.; Rio, V.S.; Darlington, T. Radar-based refractivity maps using geostatistical interpolation. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3509205. [Google Scholar]
- Yang, J.; Heo, J.; Kim, J.; Park, Y.; Choo, H.; Park, Y.B. Predicting atmospheric refractivity over the Korean peninsula using deep learning techniques. J. Korean Inst. Electromagn. Eng. Sci. 2023, 34, 493–496. [Google Scholar] [CrossRef]
- ITU. The Radio Refractive Index: Its Formula and Refractivity Data. ITU-R P.453. 2019. Available online: https://www.itu.int/rec/R-REC-P.453/en (accessed on 8 September 2019).
- Korea Meteorological Administration, National Climate Data Center. Available online: https://data.kma.go.kr/resources/html/en/aowdp.html (accessed on 31 October 2023).
- Wackernagel, H. Multivariate Geostatistics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
Estimation Method | Average Error | Maximum Error |
---|---|---|
Kriging | 0.24 | 1.32 |
Bi-linear | 1.97 | 8.4 |
IDW | 3.81 | 11.34 |
Season | Average Error on Land | Maximum Error on Land | Average Error on Sea | Maximum Error on Sea |
---|---|---|---|---|
Winter | 0.28 | 1.32 | 0.12 | 0.58 |
Spring | 0.26 | 1.12 | 0.16 | 0.69 |
Summer | 0.51 | 7.83 | 0.32 | 0.93 |
Fall | 0.53 | 4.12 | 0.5 | 2.44 |
Season | Average Error | Maximum Error |
---|---|---|
Winter | 0.25 | 3.25 |
Spring | 0.38 | 8.78 |
Summer | 0.69 | 12.21 |
Fall | 0.62 | 14.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, D.; Kim, N.; Choo, H. Kriging Interpolation for Constructing Database of the Atmospheric Refractivity in Korea. Remote Sens. 2024, 16, 2379. https://doi.org/10.3390/rs16132379
Jang D, Kim N, Choo H. Kriging Interpolation for Constructing Database of the Atmospheric Refractivity in Korea. Remote Sensing. 2024; 16(13):2379. https://doi.org/10.3390/rs16132379
Chicago/Turabian StyleJang, Doyoung, Nammoon Kim, and Hosung Choo. 2024. "Kriging Interpolation for Constructing Database of the Atmospheric Refractivity in Korea" Remote Sensing 16, no. 13: 2379. https://doi.org/10.3390/rs16132379
APA StyleJang, D., Kim, N., & Choo, H. (2024). Kriging Interpolation for Constructing Database of the Atmospheric Refractivity in Korea. Remote Sensing, 16(13), 2379. https://doi.org/10.3390/rs16132379