Integrating NTL Intensity and Building Volume to Improve the Built-Up Areas’ Extraction from SDGSAT-1 GLI Data
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
2.2.1. SDGSAT-1 GLI Data
2.2.2. Building Volume Data
2.2.3. Auxiliary Datasets
3. Methods
3.1. Integration of NTL Information and Building Information
3.2. Extraction of Built-Up Area
4. Results
4.1. Characteristics of LitBV Index
4.2. Built-Up Area Extraction Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wigginton, N.S.; Fahrenkamp-Uppenbrink, J.; Wible, B.; Malakoff, D. Cities are the Future. Science 2016, 352, 904–905. [Google Scholar] [CrossRef] [PubMed]
- United Nations. World Urbanization Prospects: The 2007 Revision; United Nations: New York, NY, USA, 2007. [Google Scholar]
- Defries, R.S.; Bounoua, L.; Collatz, G.J. Human modification of the landscape and surface climate in the next fifty years. Glob. Chang. Biol. 2002, 8, 438–458. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Yu, D.; Georgescu, M.; Wu, J.; Wang, W. Impacts of future urban expansion on summer climate and heat-related human health in eastern China. Environ. Int. 2018, 112, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhou, C.; Xu, W. Spatial-Temporal Characteristics of Primary and Secondary Educational Resources for Relocated Children of Migrant Workers: The Case of Liaoning Province. Complexity 2020, 2020, 7457109. [Google Scholar] [CrossRef]
- United Nations. Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2007. [Google Scholar]
- Wang, Y.; Huang, C.; Feng, Y.; Zhao, M.; Gu, J. Using Earth Observation for Monitoring SDG 11.3.1-Ratio of Land Consumption Rate to Population Growth Rate in Mainland China. Remote Sens. 2020, 12, 357. [Google Scholar] [CrossRef]
- Cai, G.; Zhang, J.; Du, M.; Li, C.; Peng, S. Identification of urban land use efficiency by indicator-SDG 11.3.1. PLoS ONE 2021, 15, e0244318. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gong, P.; Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, Y.; Seto, K.C.; Stokes, E.C.; Deng, C.; Pickett, S.T.A.; Taubenböck, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens. Environ. 2019, 228, 164–182. [Google Scholar] [CrossRef]
- Liu, C.; Yang, K.; Bennett, M.M.; Guo, Z.; Cheng, L.; Li, M. Automated Extraction of Built-Up Areas by Fusing VIIRS Nighttime Lights and Landsat-8 Data. Remote Sens. 2019, 11, 1571. [Google Scholar] [CrossRef]
- Chen, F.; Wang, N.; Yu, B.; Wang, L. Res2-Unet, a New Deep Architecture for Building Detection from High Spatial Resolution Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1494–1501. [Google Scholar] [CrossRef]
- Yu, B.; Wang, C.; Gong, W.; Chen, Z.; Shi, K.; Wu, B.; Hong, Y.; Li, Q.; Wu, J. Nighttime light remote sensing and urban studies: Data, methods, applications, and prospects. Natl. Remote Sens. Bull. 2021, 25, 342–364. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of Satellite Remote Sensing of Nighttime Light Observations: Advances, Challenges, and Perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
- Bennett, M.M.; Smith, L.C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Song, W.; Liu, H.; Wu, Q.; Shi, K.; Wu, J. A New Approach for Detecting Urban Centers and Their Spatial Structure With Nighttime Light Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6305–6319. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Zhou, Y.; Chen, Y.; Yang, C.; Chen, Z.; Wu, J. Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels. Appl. Energy 2019, 233–234, 170–181. [Google Scholar] [CrossRef]
- Shi, K.; Chang, Z.; Chen, Z.; Wu, J.; Yu, B. Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: A case study of Chongqing, China. J. Clean. Prod. 2020, 255, 120245. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Asrar, G.R.; Smith, S.J.; Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ. 2018, 219, 206–220. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Imura, H.; Higashi, O. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Imhoff, M.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “City Lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Liu, Y.; Delahunty, T.; Zhao, N.; Cao, G. These lit areas are undeveloped: Delimiting China’s urban extents from thresholded nighttime light imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 39–50. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cheng, W.; Zhou, C.; Ma, T.; Li, M.; Huang, K. Mapping urban dynamics (1992–2018) in Southeast Asia using consistent nighttime light data from DMSP and VIIRS. Remote Sens. Environ. 2020, 248, 111980. [Google Scholar] [CrossRef]
- Guo, H.; Dou, C.; Chen, h.; Liu, J.; Fu, B.; Li, X.; Zou, Z.; Liang, D. SDGSAT-1: The world’s first scientific satellite for sustainable development goals. Sci. Bull. 2022, 68, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, F.; Wang, N.; Yu, B.; Wang, L. SDGSAT-1 nighttime light data improve village-scale built-up delineation. Remote Sens. Environ. 2023, 297, 113764. [Google Scholar] [CrossRef]
- Sutton, P.C.; Roberts, D.; Elvidge, C.D.; Meji, H. A Comparison of Nighttime Satellite Imagery and Population Density for the Continental United States. Photogramm. Eng. Remote Sens. 1997, 63, 1303–1313. [Google Scholar]
- Zhu, X.; Tan, X.; Liao, M.; Liu, T.; Su, M.; Zhao, S.; Xu, Y.N.; Liu, X. Assessment of a New Fine-Resolution Nighttime Light Imagery From the Yangwang-1 (“Look up 1”) Satellite. IEEE Geosci. Remote Sens. Lett. 2022, 19, 650520. [Google Scholar] [CrossRef]
- Tan, X.; Chen, R.; Zhu, X.; Li, X.; Chen, J.; Wong, M.S.; Xu, S.; Xu, Y.N. Spatial heterogeneity of uncertainties in daily satellite nighttime light time series. Int. J. Appl. Earth Obs. Geoinf. 2023, 123, 103484. [Google Scholar] [CrossRef]
- Wang, C.; Qin, H.; Zhao, K.; Dong, P.; Yang, X.; Zhou, G.; Xi, X. Assessing the Impact of the Built-Up Environment on Nighttime Lights in China. Remote Sens. 2019, 11, 1712. [Google Scholar] [CrossRef]
- Wu, B.; Yang, C.; Chen, Z.; Wu, Q.; Yu, S.; Wang, C.; Li, Q.; Wu, J.; Yu, B. The Relationship Between Urban 2-D/3-D Landscape Pattern and Nighttime Light Intensity. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 478–489. [Google Scholar] [CrossRef]
- Shi, L.; Foody, G.M.; Boyd, D.S.; Girindram, R.; Wang, L.; Du, Y.; Ling, F. Night-time lights are more strongly related to urban building volume than to urban area. Remote Sens. Lett. 2020, 11, 29–36. [Google Scholar] [CrossRef]
- Wu, B.; Yang, C.; Wu, Q.; Wang, C.; Wu, J.; Yu, B. A building volume adjusted nighttime light index for characterizing the relationship between urban population and nighttime light intensity. Comput. Environ. Urban Syst. 2023, 99, 101911. [Google Scholar] [CrossRef]
- Wu, B.; Huang, H.; Wang, Y.; Shi, S.; Wu, J.; Yu, B. Global spatial patterns between nighttime light intensity and urban building morphology. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103495. [Google Scholar] [CrossRef]
- Chen, H.; Wu, B.; Yu, B.; Chen, Z.; Wu, Q.; Lian, T.; Wang, C.; Li, Q.; Wu, J. A New Method for Building-Level Population Estimation by Integrating LiDAR, Nighttime Light, and POI Data. J. Remote Sens. 2021, 2021, 9803796. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y. Chen A Genetic Algorithm-Based Urban Cluster Automatic Threshold Method by Combining VIIRS DNB, NDVI, and NDBI to Monitor Urbanization. Remote Sens. 2018, 10, 277. [Google Scholar] [CrossRef]
- Liu, Y.; Long, T.; Jiao, W.; Du, Y.; He, G.; Chen, B.; Huang, P. Automatic segment-wise restoration for wide irregular stripe noise in SDGSAT-1 multispectral data using side-slither data. Egypt. J. Remote Sens. Space Sci. 2023, 26, 747–757. [Google Scholar] [CrossRef]
- Liu, Y.; Long, T.; Jiao, W.; Chen, B.; Cheng, B.; Du, Y.; He, G.; Huang, P. Leveraging “Night–Day” Calibration Data to Correct Stripe Noise and Vignetting in SDGSAT-1 Nighttime-Light Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5616923. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, B.; Shi, L.; Gao, J.; Long, T.; Chen, B.; Wang, G. A Destriping Algorithm for SDGSAT-1 Nighttime Light Images Based on Anomaly Detection and Spectral Similarity Restoration. Remote Sens. 2022, 14, 5544. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; Chen, Z.; Li, W.; Zhang, L.; Wu, B.; Huang, Y.; Li, Y.; Ni, J.; Wu, J.; et al. Efficacy of the SDGSAT-1 glimmer imagery in measuring sustainable development goal indicators 7.1.1, 11.5.2, and target 7.3. Remote Sens. Environ. 2024, 305, 114079. [Google Scholar] [CrossRef]
- Li, Z.; He, W.; Cheng, m.; Hu, J.; Yang, G.; Zhang, H. SinoLC-1: The first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data. Earth Syst. Sci. Data 2023, 15, 4749–4780. [Google Scholar] [CrossRef]
- Zhao, N.; Liu, Y.; Cao, G.; Samson, E.; Zhang, J. Forecasting China’s GDP at the pixel level using nighttime lights time series and population images. GIScience Remote Sens. 2017, 54, 407–425. [Google Scholar] [CrossRef]
- Eberenz, S.; Stocker, D.; Röösli, T.; Bresch, D.N. Asset exposure data for global physical risk assessment. Earth Syst. Sci. Data 2020, 12, 817–833. [Google Scholar] [CrossRef]
- Yu, B.; Tang, M.; Wu, Q.; Yang, C.; Deng, S.; Shi, K.; Peng, C.; Wu, J.; Chen, Z. Urban Built-Up Area Extraction from Log- Transformed NPP-VIIRS Nighttime Light Composite Data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1279–1283. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; Chen, Z.; Li, Q.; Wu, Q.; Li, Y.; Wu, J.; Yu, B. Enhancing nighttime light remote Sensing: Introducing the nighttime light background value (NLBV) for urban applications. Int. J. Appl. Earth Obs. Geoinf. 2024, 126, 103626. [Google Scholar] [CrossRef]
- Gaston, K.J.; Bennie, J. Demographic effects of artificial nighttime lighting on animal populations. Environ. Rev. 2014, 22, 323–330. [Google Scholar] [CrossRef]
- Li, X.; Ma, R.; Zhang, Q.; Li, D.; Liu, S.; He, T.; Zhao, L. Anisotropic characteristic of artificial light at night—Systematic investigation with VIIRS DNB multi-temporal observations. Remote Sens. Environ. 2019, 233, 111357. [Google Scholar] [CrossRef]
Extraction Result | |||||||
---|---|---|---|---|---|---|---|
SDGSAT-1 GLI | Building Volume | LitBV | |||||
BA | Non-BA | BA | Non-BA | BA | Non-BA | ||
Reference data | BA | 11,256,910 | 28,964,036 | 14,009,126 | 26,211,820 | 30,077,582 | 10,129,476 |
Non-BA | 644,112 | 26,845,146 | 3,451,115 | 24,038,143 | 2,559,925 | 24,893,245 | |
Overall accuracy | 56.27% | 56.19% | 81.25% | ||||
Kappa | 0.2205 | 0.1970 | 0.6274 | ||||
AA | 0.9459 | 0.8023 | 0.9216 | ||||
EA | 0.2799 | 0.3483 | 0.7481 |
Extraction Result | |||||||
---|---|---|---|---|---|---|---|
SDGSAT100m | Building Volume100m | LitBV_SDGSAT100m | |||||
BA | Non-BA | BA | Non-BA | BA | Non-BA | ||
Reference data | BA | 127,681 | 214,780 | 215,771 | 126,268 | 303,102 | 39,359 |
Non-BA | 26,174 | 309,024 | 21,282 | 314,338 | 93,686 | 241,512 | |
Overall accuracy | 64.44% | 78.23% | 80.37% | ||||
Kappa | 0.2930 | 0.5658 | 0.6066 | ||||
AA | 0.8299 | 0.9102 | 0.7639 | ||||
EA | 0.3728 | 0.6308 | 0.8851 |
Extraction Result | |||||||
---|---|---|---|---|---|---|---|
SDGSAT500m | Building Volume500m | LitBV_SDGSAT500m | |||||
BA | Non-BA | BA | Non-BA | BA | Non-BA | ||
Reference data | BA | 5893 | 7770 | 10,715 | 994 | 11,854 | 1809 |
Non-BA | 678 | 12,754 | 3012 | 12,374 | 2249 | 11,183 | |
Overall accuracy | 68.82% | 85.21% | 85.02% | ||||
Kappa | 0.3791 | 0.7048 | 0.7004 | ||||
AA | 0.8968 | 0.7806 | 0.8405 | ||||
EA | 0.4313 | 0.9151 | 0.8676 |
Extraction Result | |||||||
---|---|---|---|---|---|---|---|
Luojia-1 Data | Building Volume | LitBV_Luojia | |||||
BA | Non-BA | BA | Non-BA | BA | Non-BA | ||
Reference data | BA | 237,240 | 105,232 | 215,771 | 126,268 | 297,247 | 45,325 |
Non-BA | 71,053 | 264,134 | 21,282 | 314,338 | 88,059 | 247,584 | |
Overall accuracy | 74.08% | 78.23% | 80.33% | ||||
Kappa | 0.4802 | 0.5658 | 0.6061 | ||||
AA | 0.7695 | 0.9102 | 0.7715 | ||||
EA | 0.6927 | 0.6308 | 0.8677 |
Extraction Result | |||||||
---|---|---|---|---|---|---|---|
BlackMarble Data | Building Volume | LitBV_BlackMarble | |||||
BA | Non-BA | BA | Non-BA | BA | Non-BA | ||
Reference data | BA | 10,691 | 2976 | 10,715 | 994 | 11,940 | 1727 |
Non-BA | 1422 | 12,029 | 2952 | 12,457 | 1267 | 12,184 | |
Overall accuracy | 85.26% | 85.45% | 88.96% | ||||
Kappa | 0.6759 | 0.7093 | 0.7792 | ||||
AA | 0.8826 | 0.7840 | 0.9041 | ||||
EA | 0.7822 | 0.9151 | 0.8736 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Wang, C.; Wu, B.; Chen, Z.; Zhang, J.; Huang, Y.; Wu, J.; Yu, B. Integrating NTL Intensity and Building Volume to Improve the Built-Up Areas’ Extraction from SDGSAT-1 GLI Data. Remote Sens. 2024, 16, 2278. https://doi.org/10.3390/rs16132278
Liu S, Wang C, Wu B, Chen Z, Zhang J, Huang Y, Wu J, Yu B. Integrating NTL Intensity and Building Volume to Improve the Built-Up Areas’ Extraction from SDGSAT-1 GLI Data. Remote Sensing. 2024; 16(13):2278. https://doi.org/10.3390/rs16132278
Chicago/Turabian StyleLiu, Shaoyang, Congxiao Wang, Bin Wu, Zuoqi Chen, Jiarui Zhang, Yan Huang, Jianping Wu, and Bailang Yu. 2024. "Integrating NTL Intensity and Building Volume to Improve the Built-Up Areas’ Extraction from SDGSAT-1 GLI Data" Remote Sensing 16, no. 13: 2278. https://doi.org/10.3390/rs16132278