Intelligent Reconstruction of Radar Composite Reflectivity Based on Satellite Observations and Deep Learning
Abstract
:1. Introduction
2. Data and Data Processing
2.1. Satellite Observations
2.2. CREF
2.3. GPM Data
2.4. Data Processing
3. Method
3.1. Hybrid Conv Block
3.2. Enhanced Pooling Module
3.3. ER-UNet
3.4. Loss Function and Optimizer
3.5. Evaluation Function
4. Results
4.1. Case Study
4.2. Statistical Results on Testing Data
4.3. Ablation Analysis of ER-UNet
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Chen, G.; Lei, H.; Wang, Y.; Tang, S. Improving the Predictability of Severe Convective Weather Processes by Using Wind Vectors and Potential Temperature Changes: A Case Study of a Severe Thunderstorm. Adv. Meteorol. 2016, 2016, 8320189. [Google Scholar] [CrossRef]
- Fang, W.; Xue, Q.Y.; Shen, L.; Sheng, V.S. Survey on the Application of Deep Learning in Extreme Weather Prediction. Atmosphere 2021, 12, 661. [Google Scholar] [CrossRef]
- Dahan, K.S.; Kasei, R.A.; Husseini, R.; Said, M.Y.; Rahman, M.M. Towards understanding the environmental and climatic changes and its contribution to the spread of wildfires in Ghana using remote sensing tools and machine learning (Google Earth Engine). Int. J. Digit. Earth 2023, 16, 1300–1331. [Google Scholar] [CrossRef]
- Yeary, M.; Cheong, B.L.; Kurdzo, J.M.; Yu, T.-Y.; Palmer, R. A Brief Overview of Weather Radar Technologies and Instrumentation. IEEE Instrum. Meas. Mag. 2014, 17, 10–15. [Google Scholar] [CrossRef]
- Roberts, R.D.; Rutledge, S. Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Weather Forecast. 2003, 18, 562–584. [Google Scholar] [CrossRef]
- Alfieri, L.; Claps, P.; Laio, F. Time-dependent Z-R relationships for estimating rainfall fields from radar measurements. Nat. Hazards Earth Syst. Sci. 2010, 10, 149–158. [Google Scholar] [CrossRef]
- Han, D.; Choo, M.; Im, J.; Shin, Y.; Lee, J.; Jung, S. Precipitation nowcasting using ground radar data and simpler yet better video prediction deep learning. Gisci. Remote Sens. 2023, 60, 2203363. [Google Scholar] [CrossRef]
- Sokol, Z. Assimilation of extrapolated radar reflectivity into a NWP model and its impact on a precipitation forecast at high resolution. Atmos. Res. 2011, 100, 201–212. [Google Scholar] [CrossRef]
- Dinku, T.; Anagnostou, E.N.; Borga, M. Improving radar-based estimation of rainfall over complex terrain. J. Appl. Meteorol. 2002, 41, 1163–1178. [Google Scholar] [CrossRef]
- Farmonov, N.; Amankulova, K.; Szatmari, J.; Urinov, J.; Narmanov, Z.; Nosirov, J.; Mucsi, L. Combining PlanetScope and Sentinel-2 images with environmental data for improved wheat yield estimation. Int. J. Digit. Earth 2023, 16, 847–867. [Google Scholar] [CrossRef]
- Guo, H.D.; Liu, Z.; Zhu, L.W. Digital Earth: Decadal experiences and some thoughts. Int. J. Digit. Earth 2010, 3, 31–46. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Bedka, K.M. Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Weather Rev. 2006, 134, 49–78. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Mackenzie, W.M., Jr.; Koenig, M.; Muller, S. Cloud-Top Properties of Growing Cumulus prior to Convective Initiation as Measured by Meteosat Second Generation. Part II: Use Visible Reflectance. J. Appl. Meteorol. Climatol. 2010, 49, 2544–2558. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Rosenfeld, D.; Manzato, A. Evaluation of geostationary satellite observations and the development of a 1-2h prediction model for future storm intensity. J. Geophys. Res. Atmos. 2016, 121, 6374–6392. [Google Scholar] [CrossRef]
- Sieglaff, J.M.; Cronce, L.M.; Feltz, W.F. Improving Satellite-Based Convective Cloud Growth Monitoring with Visible Optical Depth Retrievals. J. Appl. Meteorol. Climatol. 2014, 53, 506–520. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9-Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, Y.; Li, B.; Li, L.; Feng, J.; Jia, S.; Lv, S.; Tao, F.; Guo, J. Cloud-base and cloud-top heights determined from a ground-based cloud radar in Beijing, China. Atmos. Environ. 2019, 201, 381–390. [Google Scholar] [CrossRef]
- Hilburn, K.A.; Ebert-Uphoff, I.; Miller, S.D. Development and Interpretation of a Neural-Network-Based Synthetic Radar Reflectivity Estimator Using GOES-R Satellite Observations. J. Appl. Meteorol. Climatol. 2021, 60, 3–21. [Google Scholar] [CrossRef]
- Xiang Zhu, X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A review. arxiv 2017, arXiv:1710.03959. [Google Scholar]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Wang, K.; Cain, J.; Salami, M.; Duffy, D.Q.Q.; Little, M.M.M.; Yang, C. Adopting GPU computing to support DL-based Earth science applications. Int. J. Digit. Earth 2023, 16, 2660–2680. [Google Scholar] [CrossRef]
- Ayzel, G.; Scheffer, T.; Heistermann, M. RainNet v1.0: A convolutional neural network for radar-based precipitation nowcasting. Geosci. Model Dev. 2020, 13, 2631–2644. [Google Scholar] [CrossRef]
- Pan, X.; Lu, Y.; Zhao, K.; Huang, H.; Wang, M.; Chen, H. Improving Nowcasting of Convective Development by Incorporating Polarimetric Radar Variables Into a Deep-Learning Model. Geophys. Res. Lett. 2021, 48, e2021GL095302. [Google Scholar] [CrossRef]
- Han, L.; Liang, H.; Chen, H.; Zhang, W.; Ge, Y. Convective Precipitation Nowcasting Using U-Net Model. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4103508. [Google Scholar] [CrossRef]
- Trebing, K.; Stanczyk, T.; Mehrkanoon, S. SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture. Pattern. Recogn. Lett. 2021, 145, 178–186. [Google Scholar] [CrossRef]
- Chen, W.; Hua, W.; Ge, M.; Su, F.; Liu, N.; Liu, Y.; Xiong, A. Severe Precipitation Recognition Using Attention-UNet of Multichannel Doppler Radar. Remote Sens. 2023, 15, 1111. [Google Scholar] [CrossRef]
- Pfreundschuh, S.; Ingemarsson, I.; Eriksson, P.; Vila, D.A.; Calheiros, A.J.P. An improved near-real-time precipitation retrieval for Brazil. Atmos. Meas. Tech. 2022, 15, 6907–6933. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Tian, W.; Chen, S. Radar Reflectivity and Meteorological Factors Merging-Based Precipitation Estimation Neural Network. Earth Space Sci. 2021, 8, e2021EA001811. [Google Scholar] [CrossRef]
- Chen, H.; He, Y.; Zhang, L.; Yao, S.; Yang, W.; Fang, Y.; Liu, Y.; Gao, B. A landslide extraction method of channel attention mechanism U-Net network based on Sentinel-2A remote sensing images. Int. J. Digit. Earth 2023, 16, 552–577. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Duan, M.; Xia, J.; Yan, Z.; Han, L.; Zhang, L.; Xia, H.; Yu, S. Reconstruction of the Radar Reflectivity of Convective Storms Based on Deep Learning and Himawari-8 Observations. Remote Sens. 2021, 13, 3330. [Google Scholar] [CrossRef]
- Sun, F.; Li, B.; Min, M.; Qin, D. Deep Learning-Based Radar Composite Reflectivity Factor Estimations from Fengyun-4A Geostationary Satellite Observations. Remote Sens. 2021, 13, 2229. [Google Scholar] [CrossRef]
- Yu, X.; Lou, X.; Yan, Y.; Yan, Z.; Cheng, W.; Wang, Z.; Zhao, D.; Xia, J. Radar Echo Reconstruction in Oceanic Area via Deep Learning of Satellite Data. Remote Sens. 2023, 15, 3065. [Google Scholar] [CrossRef]
- Jia, Z.; Shi, A.; Xie, G.; Mu, S. Image Segmentation of Persimmon Leaf Diseases Based on UNet. In Proceedings of the 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 15–17 April 2022; pp. 2036–2039. [Google Scholar]
- Wang, D.; Liu, Y. An Improved Neural Network Based on UNet for Surface Defect Segmentation. In 3D Imaging Technologies—Multidimensional Signal Processing and Deep Learning; Springer: Singapore, 2021; pp. 27–33. [Google Scholar]
- Weng, W.; Zhu, X. INet: Convolutional Networks for Biomedical Image Segmentation. IEEE Access 2021, 9, 16591–16603. [Google Scholar] [CrossRef]
- Wang, D.; Hu, G.; Lyu, C. FRNet: An end-to-end feature refinement neural network for medical image segmentation. Vis. Comput. 2021, 37, 1101–1112. [Google Scholar] [CrossRef]
- Wen, S.C.; Wei, S.L. KUnet: Microscopy Image Segmentation with Deep Unet Based Convolutional Networks. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; IEEE: Piscataway, NJ, USA; pp. 3561–3566. [Google Scholar]
- Xia, X.; Min, J.; Shen, F.; Wang, Y.; Xu, D.; Yang, C.; Zhang, P. Aerosol data assimilation using data from Fengyun-4A, a next-generation geostationary meteorological satellite. Atmos. Environ. 2020, 237, 117695. [Google Scholar] [CrossRef]
- Antonini, A.; Melani, S.; Corongiu, M.; Romanelli, S.; Mazza, A.; Ortolani, A.; Gozzini, B. On the Implementation of a Regional X-BandWeather Radar Network. Atmosphere 2017, 8, 25. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, Q.; Xue, Y.; Sun, F.; Li, J.; Zhen, X.; Lu, T. Radar Composite Reflectivity Reconstruction Based on FY-4A Using Deep Learning. Sensors 2023, 23, 81. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; AghaKouchak, A.; Liu, Z.; Norouzi, H.; Pai, D.S. A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol. 2018, 556, 865–876. [Google Scholar] [CrossRef]
- Chen, H.; Yong, B.; Shen, Y.; Liu, J.; Hong, Y.; Zhang, J. Comparison analysis of six purely satellite-derived global precipitation estimates. J. Hydrol. 2020, 581, 124376. [Google Scholar] [CrossRef]
- Liu, D.; Qie, X.; Xiong, Y.; Feng, G. Evolution of the total lightning activity in a leading-line and trailing stratiform mesoscale convective system over Beijing. Adv. Atmos. Sci. 2011, 28, 866–878. [Google Scholar] [CrossRef]
- Gupta, A.; Harrison, P.J.; Wieslander, H.; Pielawski, N.; Kartasalo, K.; Partel, G.; Solorzano, L.; Suveer, A.; Klemm, A.H.; Spjuth, O.; et al. Deep Learning in Image Cytometry: A Review. Cytom. Part A 2019, 95A, 366–380. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, F.; Zhou, Z.; Wang, J. BFMNet: Bilateral feature fusion network with multi-scale context aggregation for real-time semantic segmentation. Neurocomputing 2023, 521, 27–40. [Google Scholar] [CrossRef]
- Zhou, Y.; Kong, Q.; Zhu, Y.; Su, Z. MCFA-UNet: Multiscale Cascaded Feature Attention U-Net for Liver Segmentation. IRBM 2023, 44, 100789. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2016, arXiv:1511.07122. [Google Scholar]
- Zhu, Y.; Newsam, S. Densenet for Dense Flow. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 790–794. [Google Scholar]
- Zhao, Z.; Xia, C.; Xie, C.; Li, J. Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual Event, China, 20–24 October 2021; pp. 4967–4975. [Google Scholar]
- Versaci, F. WaveTF: A Fast 2D Wavelet Transform for Machine Learning in Keras; Springer International Publishing: Cham, Switzerland, 2021; pp. 605–618. [Google Scholar]
- Yin, X.-C.; Han, P.; Zhang, J.; Zhang, F.-Q.; Wang, N.-L. Application of Wavelet Transform in Signal Denoising. In Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693), Xi’an, China, 5 November 2003; Volume 431, pp. 436–441. [Google Scholar]
- Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- McKeen, S.; Wilczak, J.; Grell, G.; Djalalova, I.; Peckham, S.; Hsie, E.Y.; Gong, W.; Bouchet, V.; Menard, S.; Moffet, R.; et al. Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004. J. Geophys. Res. Atmos. 2005, 110, D21307. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, S.; Tan, J. TSRC: A Deep Learning Model for Precipitation Short-Term Forecasting over China Using Radar Echo Data. Remote Sens. 2023, 15, 142. [Google Scholar] [CrossRef]
Input Bands | Central Wavelength | Physical Meaning | Model Index |
---|---|---|---|
Band02 | 0.65 μm | cloud optical thickness | Model (VIS) |
Band05 | 1.61 μm | cloud phase, cloud effective particle radius | |
Band06 | 2.225 μm | cloud phase, aerosol | |
Band07 | 3.725 μm | clouds, moisture | Model (IR) |
Band13 | 10.8 μm | mid-level water vapor cloud top temperature | |
Band14 | 12.0 μm | cloud top temperature | |
BTDs | 10.8 μm–6.2 μm | cloud top height relative to tropopause |
Ground Truth | |||
---|---|---|---|
True | False | ||
Reconstruction | True | True Positive (TP) | False Positive (FP) |
False | False Negative (FN) | True Negative (TN) |
Input Data | VIS + NIR | IR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Metrics | RMSE | MAE | SSIM | CSI | HSS | RMSE | MAE | SSIM | CSI | HSS |
UNet | 3.22 | 0.96 | 0.85 | 0.37 | 0.54 | 4.00 | 1.33 | 0.80 | 0.21 | 0.34 |
HCB-UNet | 2.80 | 0.78 | 0.87 | 0.51 | 0.68 | 3.10 | 0.90 | 0.85 | 0.33 | 0.49 |
EPM-UNet | 2.99 | 0.87 | 0.86 | 0.43 | 0.60 | 3.61 | 1.10 | 0.84 | 0.42 | 0.59 |
ER-UNet | 2.58 | 0.69 | 0.88 | 0.55 | 0.71 | 2.86 | 0.80 | 0.86 | 0.44 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Tan, J.; Chen, S.; Huang, Q.; Gao, L.; Li, Y.; Wei, C. Intelligent Reconstruction of Radar Composite Reflectivity Based on Satellite Observations and Deep Learning. Remote Sens. 2024, 16, 275. https://doi.org/10.3390/rs16020275
Zhao J, Tan J, Chen S, Huang Q, Gao L, Li Y, Wei C. Intelligent Reconstruction of Radar Composite Reflectivity Based on Satellite Observations and Deep Learning. Remote Sensing. 2024; 16(2):275. https://doi.org/10.3390/rs16020275
Chicago/Turabian StyleZhao, Jianyu, Jinkai Tan, Sheng Chen, Qiqiao Huang, Liang Gao, Yanping Li, and Chunxia Wei. 2024. "Intelligent Reconstruction of Radar Composite Reflectivity Based on Satellite Observations and Deep Learning" Remote Sensing 16, no. 2: 275. https://doi.org/10.3390/rs16020275
APA StyleZhao, J., Tan, J., Chen, S., Huang, Q., Gao, L., Li, Y., & Wei, C. (2024). Intelligent Reconstruction of Radar Composite Reflectivity Based on Satellite Observations and Deep Learning. Remote Sensing, 16(2), 275. https://doi.org/10.3390/rs16020275